COMUNE DI CASAPESENNA

Provincia di Caserta Decreto Dirigenziale n. 3 del 26/03/2018

AVVISO PUBBLICO PER LA PRESENTAZIONE DI PROGETTI COERENTI CON I PROGRAMMI DI INTERVENTO SULLA VIABILITÀ REGIONALE FINANZIATI CON LE RISORSE FSC 2014-2020 DI CUI ALLA DELIBERA CIPE 54-2016

Stralcio Funzionale - ESECUTIVO

Lavori di riqualificazione, messa in sicurezza e risanamento ambientale del tessuto periferico nel Territorio Comunale

1	1	The Territorio Comunate				
Il Progettista: data:						
	l — .	NCO ELABORATI - PROGETTO ESI	ECUTIVO			
	tav. 1 Relazione tecnica Generale - Quadro Economico					
	tav. 2	Relazione Idraulica - dimensionamento spechi fogi	nari			
	tav. 3	Relazione di calcolo elettrico - illuminotecnico				
	tav. 4	Relazione sulle Interferenze				
	tav. 5	Relazione sulla Gestione delle Materie				
	tav. 6	Relazione - (Criteri Minimi Ambientali) - punti 2.4	1.1.1 e 2.4.1.2			
	tav. 7	Planimetria Interferenze	rapp. 1:5000			
	tav. 8	Planimetria generale d'inquadramento	rapp. 1:5000			
	tav. 9 P.U.C. (Piano Urbanistico Comunale)-Zonizzazione ra					
	tav. 10	Planimetria Stato dei Luoghi - (foglio 1)	rapp. 1:1000			
	tav. 11	Planimetria Stato dei Luoghi - (foglio 2)	rapp. 1:1000			
	tav. 12	Planimetria Stato dei Luoghi - (foglio 3)	rapp. 1:1000			
		Planimetria di progetto - Rete Stradale (foglio 1)	rapp. 1:50			
(timbro e firma)	tav. 13	Planimetria di progetto - Rete Stradale (foglio 2)	rapp. 1:500			
		Planimetria di progetto - Rete Stradale (foglio 3)	rapp. 1:500			
		Planimetria di progetto - Rete Stradale (foglio 4)	rapp. 1:500			
	tav. 14	Planimetria di progetto - Rete Stradale (foglio 5)	rapp. 1:500			
II R.U.P.		Planimetria di progetto - Rete Stradale (foglio 6)	rapp. 1:500			
	tav. 15	Planimetria aree pluviometriche	rapp. 1:2000			
	tav. 16	Planimetria di progetto - Rete Fognaria (foglio 1)	rapp. 1:1000			
	tav. 17	Planimetria di progetto - Rete Fognaria (foglio 2)	rapp. 1:1000			
	tav. 18	Planimetria di progetto - Rete Fognaria (foglio 3)	rapp. 1:1000			
	tav. 19	Profilo longitudinale (Strada Provinciale n. 340) ra	pp.1:1000/100			
	tav. 20	Particolari costruttivi (pubblica fognatura)	rapp. var			
	tav. 21	Particolari costruttivi (pubblica illuminazione)	rapp. var			
	tav. 22	Particolari costruttivi (rete stradale)	rapp. var			
	tav. 23	Analisi nuovi prezzi				
	tav. 24	Computo metrico - quadro economico				
	tav. 25	Elenco prezzi unitari				
	tav. 26	Capitolato speciale d'appalto				
	tav. 27	Schema di Contratto				
	tav. 28	Piano di sicurezza e coordinamento - Planimetria d	li Cantiere			
(timbro e firma)	tav. 29	Stima incidenza sicurezza				
	tav. 30	Stima incidenza manodopera				
	tav. 31	Cronoprogramma dei lavori - Diagramma Gantt				
		Piano di manutenzione				
	,					

SOMMARIO

•	Descrizione sommaria delle opere al fine della loro identificazione	pag. 2
•	Attività di progettazione	pag. 2
•	Modalità di realizzazione delle opere	pag.
•	Criteri utilizzati per le scelte progettuali esecutive	pag. 4
•	Attività effettuate per ridurre in corso di esecuzione	
	la possibilità di imprevisti	pag.
•	Complessità dell'intervento	pag.
•	Dati di progetto	pag. (

Allegati

- calcolo fotometrico illuminotecnico
- calcolo elettrico cadute di tensione

Descrizione sommaria delle opere al fine della loro identificazione

Oggetto del progetto è la realizzazione degli impianti di illuminazione della Strada Provinciale S. Marcellino – Casapesenna e della Strada Comunale Demaniale che collega la suddetta Strada Provinciale fino all'incrocio con il Corso Europa del Comune di Casapesenna.

L'intervento di progetto prevede l'installazione di n. 115 pali conici con altezza del centro luminoso pari a 8,50 m dalla quota del piano viabile, per l'illuminamento della carreggiata stradale e con una armatura stradale posto ad un altezza di 6,50 m dalla quota del piano viabile per l'illuminamento della pista ciclabile posta nel territorio comunale di Casapesenna.

I centri luminosi sono costituiti da lampade a LED con potenza rispettivamente di 111 e 97 Watt.

Una più dettagliata definizione di dette opere è rilevabile dagli elaborati grafici.

Attività di progettazione

Come già evidenziato in precedenza le opere oggetto del progetto sono state definite in modo da soddisfare le priorità segnalate dai preposti dell'ufficio tecnico comunale.

A tal fine sono state svolte le attività che si può così sommariamente riepilogare:

- definizione delle lavorazioni occorrenti per la realizzazione dell'opera, che si estrinseca con la progettazione definitiva;
- ingegnerizzazione di tutte le lavorazioni, per definire completamente ed in ogni particolare l'intervento da realizzare, propri del progetto esecutivo.

Gli elaborati che costituiscono il progetto di cui questo documento è la relazione generale sono il risultato di tutte le su esposte attività.

Modalità di realizzazione delle opere

DISTRIBUZIONE DELL'ENERGIA ELETTRICA

I punti luminosi saranno alimentati da tre distinti punti di consegna dell'energia elettrica, e segnatamente:

- 1. Installazione del quadro \underline{Q}_2 posizionato nei pressi della consegna Enel, davanti al cimitero, sulla Strada Provinciale S. Marcellino Casapesenna, dal quale nascono due linee trifase:
 - la linea N° 1, verso est direzione strade Comunali Via Petrarca Via Croce;
 - la linea N° 2 verso ovest direzione Comune di S. Cipriano D'Aversa;
- 2. Installazione del quadro <u>Q4</u> posizionato sulla Strada Provinciale S. Marcellino Casapesenna, nei pressi della consegna Enel di Via Croce, davanti al campo sportivo, dal quale nasce una linee trifase:
 - La linea N° 1 Strada Provinciale S. Marcellino Casapesenna;
- 7) Installazione del quadro <u>Q7</u> posizionato nei pressi dell'incrocio della Strada Provinciale S. Marcellino Casapesenna con il Corso Europa , nel territorio Comunale Casapesenna, dal quale nasce una linee trifase:
 - La linea N° 1 Strada Provinciale S. Marcellino Casapesenna e Strada Comunale Demaniale;

CONDUTTURE ELETTRICHE

Le occorrenti condutture di distribuzione saranno realizzate con cavo in corda di rame rosso ricotto isolata con gomma HEPR e guaina in pvc di qualità RZ, non propagante la fiamma, non propagante l'incendio, a ridotta emissione di gas corrosivi, del tipo FG7OR 0,6/1kV, posato in predisposta tubazione interrata.

PALI

Per le strade i pali, da lamiera, zincati, avranno sezione circolare con profilo tronco conico. Saranno completi di lavorazioni, quali asola per morsettiera, foro entrata cavi, ecc. e verniciati, previo idoneo trattamento superficiale, in modo da assumere lo stesso colore (RAL) dell'armatura.

Ciascun palo sarà pure equipaggiato con portello supporto, completo di morsettiera e portafusibili con fusibili, da incasso a filo palo, classe II.

CORPI ILLUMINANTI LED

Le armature da installare saranno caratterizzate da:

- telaio portante in pressofusione di alluminio, a basso contenuto di rame, non verniciato e finito tramite trattamento di sabbiatura;
- carenatura in poliestere rinforzato con fibra di vetro, con apposito trattamento protettivo, contro la fuoriuscita della fibra di vetro, nel tempo;
- colore Grigio Ral 7035;
- riflettore in alluminio purissimo metallizzato sottovuoto;
- chiusura in vetro piano temprato;
- unità elettrica montata su piastra, in materiale isolante;
- guarnizioni in gomma siliconica o EPDM;
- resistenza al vento SCx 0.063.

I parametri caratterizzanti detti corpi illuminanti sotto il profilo fotometrico, invece, sono riportati in allegato in calce alla presente relazione.

Criteri utilizzati per le scelte progettuali esecutive

Le scelte progettuali esecutive sono state effettuate prefiggendosi di garantire:

- gli idonei requisiti illuminotecnici;
- il contenimento del consumo energetico e dell'inquinamento luminoso;
- le necessitanti caratteristiche di funzionalità e sicurezza per persone e cose;
- un corretto rapporto qualità/prezzo.

Pertanto:

- 1) i requisiti illuminotecnici sono stati definiti per le aree interessate da traffico motorizzato, in modo da garantire i parametri contemplati da:
 - norma UNI 11248 per la selezione delle categorie illuminotecniche;
 - norma UNI EN13201-2 per i requisiti prestazionali;
 - norma UNI EN13201-3 per il calcolo delle prestazioni;

- 2) la scelta dei corpi illuminanti è stata fatta in modo da garantire:
 - un alto rendimento:
 - una distribuzione del flusso luminoso rispondente alle esigenze;
 - l'assenza di abbagliamento, in particolare per l'illuminazione delle aree destinate al traffico motorizzato;
 - l'assenza di emissione oltre i 90°;
- 3) le sorgenti luminose saranno costituite da lampade a scarica caratterizzate da elevato valore dell'efficienza luminosa;
- 4) per permettere una guida sicura le apparecchiature per l'illuminazione di aree a traffico motorizzato avranno caratteristiche tali da contenere nei disposti limiti il valore dell'indice di abbagliamento debilitante;
- 5) per il conseguimento dei disposti livelli di sicurezza tutti gli interventi sono stati definiti nel rispetto delle disposizioni impartite dalla vigente legislazione e normativa, con particolare riferimento alla legge 186/68, al decreto 22 gennaio 2008 n.37 ed alle norme in materia emanate dal Comitato Elettrotecnico Italiano; in particolare per le parti d'impianto interessate dall'intervento:
 - la protezione delle persone contro i contatti indiretti sarà garantita con l'installazione di apparecchiature di classe II o, quando non possibile, da protezioni di tipo differenziale;
 - la protezione contro i contatti diretti sarà affidata all'isolamento delle parti attive o, in assenza, ad involucri o barriere;
 - la protezione contro le sovracorrenti sarà demandata ad interruttori magnetotermici.

Attività effettuate per ridurre in corso di esecuzione la possibilità di imprevisti

Opportune indagini, rilievi e ricerche sono state effettuate al fine di ridurre la possibilità di imprevisti in corso d'esecuzione delle opere.

In particolare, sono stati compiuti più sopralluoghi finalizzati a:

- verificare lo stato degli impianti esistenti;
- rilevare eventuali discordanze tra lo stato dei luoghi e quanto rilevabile dalla documentazione fornita dal committente;
- controllare la fattibilità delle opere così come previste in progetto.

DATI DI PROGETTO

DATI DI CARATTERE GENERALE

Il progetto attiene gli impianti per l'illuminazione di alcune aree pubbliche scoperte del comune di Casapesenna e di San Cipriano D'Aversa destinate al traffico motorizzato.

Le opere:

- sono commissionate dal Comune di Casapesenna;
- sono progettate dall'ufficio tecnico Comunale del Comune di Casapesenna;
- sono finalizzate alla realizzazione degli impianti di pubblica illuminazione;
- dovranno essere realizzate nel rispetto delle vigenti disposizioni legislative e normative, con particolare riferimento alle disposizioni contemplate da:
- **legge 1º marzo 1968, n.186:** Disposizioni concernenti la produzione di materiali, apparecchiature, macchinari, installazioni e impianti elettrici ed elettronici;
- **norma CEI 64-8, sesta edizione**: Impianti elettrici utilizzatori a tensione nominale non superiore a 1000V in corrente alternata e a 1500V in corrente continua (fascicoli 8608 ÷ 8614);
- **norma CEI 81-10, fascicoli 2697 e 2943**: Protezione contro i fulmini (fascicoli 8226 ÷ 8229):
- **norma CEI 81-4, fascicolo 2924:** Valutazione del rischio dovuto al fulmine;
- norma CEI-UNEL 35024/1: Cavi elettrici isolati con materiale elastomerico o termoplastico per tensioni nominali non superiori a 1000 V in corrente alternata e a 1500 V in corrente continua;
- Portate di corrente in regime permanente per posa in aria;
- norma CEI-UNEL 35026: Cavi elettrici isolati con materiale elastomerico o termoplastico
 per tensioni nominali non superiori a 1000 V in corrente alternata e a 1500 V in corrente
 continua;
- Portate di corrente in regime permanente per posa interrata;
- **norma UNI 11248**: Iluminazione stradale Selezione delle categorie illuminotecniche;
- **norma UNI EN 13201**: Iluminazione stradale;
- L.R. 25 luglio 2002, n.12: Norme per il contenimento dell'inquinamento luminoso e del consumo energetico da illuminazione esterna pubblica e privata a tutela dell'ambiente, per la tutela dell'attività svolta dagli osservatori astronomici professionali e non professionali e per la corretta valorizzazione dei centri storici;
- **DPR 27 aprile 1955, n.547:** Norme per la prevenzione degli infortuni sul lavoro;
- **D.Lgs. 19 settembre 1994, n.626:** Attuazione delle direttive 89/391/CEE, omissis e 99/38 riguardanti il miglioramento della sicurezza e della salute dei lavoratori durante il lavoro;
- **D.Lgs. 14 agosto 1996, n.494:** Attuazione della direttiva 92/57/CEE concernente le prescrizioni minime di sicurezza e di salute da attuare nei cantieri temporanei o mobili.

DATI RELATIVI ALL'OPERA

Le opere saranno utilizzate per l'illuminazione di aree scoperte con libero accesso al pubblico ed a servizio del traffico motorizzato e ciclo pedonale.

Ai fini della protezione contro le sovratensioni quelli di cui trattasi non sono da considerarsi impianti sensibili.

Non necessita garantire il requisito di accessibilità disposto dal Decreto del Ministero dei Lavori Pubblici n.236/89.

DATI RELATIVI ALLE INFLUENZE ESTERNE

Le opere di cui trattasi saranno realizzate all'esterno e risulteranno normalmente esposte alle sollecitazioni atmosferiche.

DATI RELATIVI ALL'IMPIANTO ELETTRICO

TIPO D'INTERVENTO

L'incarico ha per oggetto la realizzazione degli impianti di pubblica illuminazione della strada provinciale n. 340 di S. Marcellino Casapesenna.

DATI DEL SISTEMA ELETTRICO

La fornitura dell'energia elettrica avviene in bassa tensione con sistema trifase+neutro, tensione nominale concatenata 400 V e frequenza 50 Hz.

Il sistema elettrico sarà del tipo TT ed in assenza del valore della corrente di corto circuito presunta nel punto di consegna si fissa, per i dispositivi di protezione, un valore del potere d'interruzione pari a 10 kA per quelli tri/tetrapolari e 6 kA per quelli bipolari.

In ogni caso detti valori dovranno, per quanto possibile, trovare conferma presso la società di distribuzione dell'energia elettrica.

Il massimo valore percentuale della caduta di tensione, dal punto di consegna ai morsetti dell'apparecchio utilizzatore, è pari al 5% della tensione nominale dell'impianto.

CARICHI ELETTRICI

I carichi elettrici saranno distribuiti su tre punti di consegna, come dal prospetto che segue:

Consegna Strada Provinciale S. Marcellino – Casapesenna (Q2)	
Linea 1 : 28 armature con lampade a LED da 111 e 93 W, per totale	5.712 W
Linea 2 : 24 armature con lampade a LED da 111 e 93 W, per totale	4.896 W
Per una potenza complessiva di	10.508 W

Consegna Strada Provinciale S. Marcellino – Casapesenna (Q ₄)	
Linea 1 : 34 armature con lampade a LED da 111 e 93 W, per totale	6.936 W
Per una potenza complessiva di	6.936 W

Consegna Strada Provinciale S. Marcellino – Casapesenna (Q ₇)	
Linea 1 : 29 armature con lampade a LED da 111 e 93 W, per totale	5.916 W
Per una potenza complessiva di	5.916 W

CRITERI DI SCELTA DELLE SOLUZIONI IMPIANTISTICHE ELETTRICHE

SCELTA DI CORPI ILLUMINANTI E SORGENTE LUMINOSA

I corpi illuminanti dovranno:

• permettere di garantire i requisiti illuminotecnici disposti dalle vigenti norme UNI 11248 e UNI EN 13201 destinati ad illuminare strade;

 rendere riconoscibili gli ostacoli sul terreno oltre che le persone e risultare idonei per la salvaguardia contro le azioni criminose se destinati ad illuminare aree a verde.

In forza di tali vincoli sono stati scelti corpi illuminanti con caratteristiche come di seguito riepilogato:

Per la strada di progetto si è considerata la categoria illuminotecnica di esercizio, infatti

per le strade provinciali la categoria illuminotecnica di riferimento secondo la classificazione EN 13201-1 & 13201-2 è **M4.**

I risultati del calcolo illuminotecnico dei corpi illuminanti caratterizzati da:

τ_{m}	1,53 cd/m ²
U_0	0,43
Ui	0,80
T _i	15
Rei	0,63

ed in grado di garantire i valori di seguito elencati in funzione dei parametri di installazione:

	Strada provinciale
altezza installazione (m)	8,50
tipo installazione	unilaterale
tipo carreggiata	singola
larghezza strada (m)	8
arretramento (m)	0,3
tilt (°)	0
Interdistanza	25
L luminanza media del manto stradale (cd/m²)	1,64
Ul uniformità longitudinale	0,80

SCELTA DEGLI ORGANI DI PROTEZIONE

La scelta degli organi di protezione è stata fatta nel rispetto dei seguenti vincoli:

- il valore della corrente nominale dell'organo di protezione non deve mai risultare inferiore a quello della corrente di impiego della conduttura protetta;
- il potere di interruzione dell'organo di protezione deve risultare sempre superiore a quello della corrente di c.to c.to nel punto di installazione.

Quali organi di protezione sono stati previsti interruttori del tipo modulare, sempre con curva d'intervento di tipo C.

DIMENSIONAMENTO CONDUTTURE

Il dimensionamento delle condutture è stato fatto nel rispetto dei seguenti vincoli:

- 1) la conduttura deve risultare protetta contro i sovraccarichi, in particolare:
 - a) la corrente di impiego deve risultare non superiore alla corrente nominale del dispositivo di protezione e detto valore di corrente nominale deve risultare non superiore alla portata della conduttura;
 - b) la corrente convenzionale di funzionamento dell'organo di protezione deve risultare non superiore a 1,45 volte la portata della conduttura;
- 2) la conduttura deve risultare protetta contro i cortocircuiti; in particolare il massimo valore dell'integrale di Joule, proprio del dispositivo di protezione, dovrà soddisfare la relazione

$$I^2t \leq K^2S^2$$

di cui all'art.434.3.2 della norma CEI 64-8/4;

3) la caduta di tensione deve essere contenuta nei limiti del 5%.

Per verificare il rispetto della precedente condizione 1) è stata determinata la portata delle singole condutture. Dall'esame di detti valori e delle caratteristiche degli organi di protezione è possibile rilevare che la condizione 1) viene soddisfatta.

Il rispetto della condizione 2), invece, è garantita dall'impiego di organi di protezione che limitano la corrente di cortocircuito (interruttori modulari) e presentano un basso valore dell'energia specifica passante.

Per la verifica del punto 3), infine, si è proceduto, per i casi significativi delle condutture in cavo, al calcolo della caduta di tensione applicando la formula

$$DU\% = K*I*(R\cos\phi + X\sin\phi)*100/U$$

con	$K = (3)\frac{1}{2}$ per i circuiti trifasi	
	K = 2 per i circuiti monofasi	

PROTEZIONE CONTRO I CONTATTI INDIRETTI

La protezione di cui trattasi sarà ottenuta con:

- impiego di apparecchiature di classe II o con isolamento equivalente;
- interruzione automatica dell'alimentazione.

In questo secondo caso le caratteristiche dei dispositivi di protezione e le impedenze dei circuiti saranno tali che, se si presenta un guasto di impedenza trascurabile in qualsiasi parte dell'impianto tra un conduttore di fase ed un conduttore di protezione o una massa, l'interruzione automatica dell'alimentazione avviene in un tempo tale da soddisfare la relazione

$$RA \cdot Ia \le 50$$

di cui all'art.413.1.4.2 della norma CEI 64-8/4.

Il rispetto di detta condizione, trattandosi di sistema TT, sarà garantito da dispositivi differenziali. Poiché le opere in questa sede previste potrebbero, nel tempo, essere soggette ad interventi di ampliamento e/o manutenzione straordinaria con installazione di apparecchiature non di classe II, l'installazione di protezioni differenziali è prevista anche per i circuiti per i quali tutte le apparecchiature sono di classe II, ancorché oggi non necessitanti.

PROTEZIONE CONTRO I CONTATTI DIRETTI

La protezione di cui trattasi sarà ottenuta mediante isolamento delle parti attive e/o involucri o barriere.

A tal fine tutte le parti attive, quando non ricoperte con un isolamento che possa essere rimosso solo mediante distruzione, saranno poste entro involucri o barriere tali da assicurare almeno il grado di protezione IPXXB; detto grado sarà pari almeno a IPXXD per le superfici orizzontali delle barriere ed involucri che sono a portata di mano.

Potranno aversi, eccezionalmente, per particolari apparecchiature, quali ad esempio portalampada e fusibili, aperture più grandi purché in accordo con le prescrizioni delle relative Norme.

DISPERSORE DI TERRA

Dove necessitante sarà realizzato con l'impiego di dispersori a picchetto.

PROTEZIONE CONTRO LE SCARICHE ATMOSFERICHE

Le dimensioni dei pali sono tali che il valore della frequenza media Nd di fulmini che colpiscono direttamente la struttura risulta inferiore della frequenza di fulminazione Na tollerabile per il tipo di struttura in esame.

Il Progettista (UTC)	

Lavori di riqualificazione, messa in sicurezza Strada n

Impianto : Strada provinciale n.340 S. Marcellino- Casapesenna

Numero progetto: 1

Cliente :

Data : 19.01.2019

Descrizione progetto:

Oggetto del progetto è la realizzazione degli impianti di illuminazione della Strada Provinciale S. Marcellino – Casapesenna e della Strada Comunale Demaniale che collega la suddetta Strada Provinciale fino all'incrocio con il Corso Europa del Comune di Casapesenna. L'intervento di progetto prevede l'installazione di n. 115 pali conici con altezza del centro luminoso pari a 8,50 m dalla quota del piano viabile, per l'illuminamento della carreggiata stradale e con una armatura stradale posto ad un altezza di 6,50 m dalla quota del piano viabile per l'illuminamento della pista ciclabile posta nel territorio comunale di Casapesenna. I centri luminosi sono costituiti da lampade a LED con potenza rispettivamente di 111 e 97 Watt.

I seguenti valori si basano su calcoli esatti di lampade e punti luce tarati e sulla loro disposizione. Nella realtà potranno verificarsi differenze graduali.Resta escluso qualunque diritto di garanzia per i dati dei punti luce. Il produttore non si assume alcuna responsabilità per danni anche parziali derivanti all'utente o a terzi.

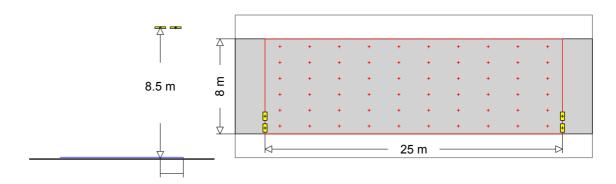
Relux1.rdf Pagina 1/18

Oggetto : Lavori di riqualificazione, messa in sicurezza Strada n.340 Impianto : Strada provinciale n.340 S. Marcellino- Casapesenna Numero progetto : 1
Data : 19.01.2019

Sommario

Coperti	ina	1
Somma	ario	2
1	strada principale 340	
1.1	Riepilogo, strada principale 340	
1.1.1	Panoramica risultato, strada principale 340	3
1.2	Risultati calcolo, strada principale 340	
1.2.1	Tabella, Strada (E orizzontale)	5
1.2.2	Tabella, Strada (Luminanza)	6
1.2.3	Tabella, Strada (TI)	7
1.2.4	Tabella, Strada (Luminanza)	8
1.2.5	Tabella, Strada (TI)	9
1.2.6	Rappresentazione isolinee, Strada (E orizzontale)	10
1.2.7	Rappresentazione isolinee, Strada (Luminanza)	11
1.2.8	Rappresentazione isolinee, Strada (Luminanza)	12
1.2.9	Falsi Colori, Strada (E orizzontale)	13
1.2.10	Falsi Colori, Strada (Luminanza)	14
1.2.11	Falsi Colori, Strada (Luminanza)	15
1.2.12	Montagne 3D, Strada (E orizzontale)	16
1.2.13	Montagne 3D, Strada (Luminanza)	17
1.2.14	Montagne 3D, Strada (Luminanza)	18

Pagina 2/18 Relux1.rdf


Numero progetto : 1

Data : 19.01.2019

1 strada principale 340

1.1 Riepilogo, strada principale 340

1.1.1 Panoramica risultato, strada principale 340

Philips Lighting

l Codice

Nome punto luce : BGS204 T25 1 xLED149-4S/830 DM50 Sorgenti : 1 x LED149-4S/830 46.2 W / 5980 Im

apparecchio lato strada

Posizionamento : Fila a destra Fattore di manut. : 0.80
Apparecchio doppio : 1.00 m Centro apparecchio doppio : 1.00 m
Distanza armature : 25.00 m Altezza (centro fotom.) : 8.50 m
Inclinazione : 0.00 °

Posizione assoluta : 1.50 m Classe di abbaglia. : D6
Potenza/Km : 3696 W/km Classe intensità lum. : G*3

Strada

Larghezza : 8.00 m Corsie : 2

Superficie : R3, q0=0.07 Superficie (bagnata) : -none-, q0=1

Luminanza Area di calcolo: 25m x 8m (10 x 6 Punti)

Osservatore

2 : x=-60.00m, y=6.00m, z=1.50m 1 : x=-60.00m, y=2.00m, z=1.50m

Lane	Ēm	Uo	UI	TI	Rei
2:(y=6.00)	1.64 cd/m ²	0.44	0.82	9	0.63
1:(y=2.00)	1.53 cd/m ²	0.43	0.80	15	0.92
M4	>= 0.75 cd/m ²	>= 0.40	>= 0.60	<= 15	>= 0.30

Illuminamento Area di calcolo: 25m x 8m (10 x 6 Punti)

Relux1.rdf Pagina 3/18

Numero progetto : 1

Data : 19.01.2019

1 strada principale 340

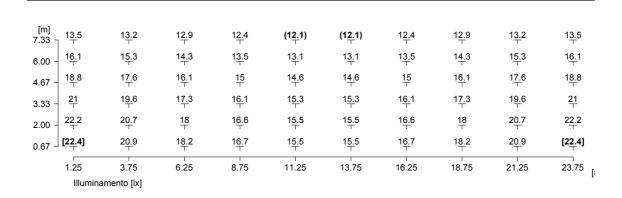
1.1 Riepilogo, strada principale 340

1.1.1 Panoramica risultato, strada principale 340

 Em
 Emin
 Uo
 Ud

 16.5 lx
 12.1 lx
 0.73
 0.54

Relux1.rdf Pagina 4/18


Numero progetto

: 19.01.2019 Data

strada principale 340 1

Risultati calcolo, strada principale 340

1.2.1 Tabella, Strada (E orizzontale)

Altezza del piano di riferimento : 0.00 m Illuminamento medio Em : 16.5 lx Illuminamento minimo Emin : 12.1 lx Illuminamento massimo Emax : 22.4 lx Uniformità Uo min/media

: 1: 1.37 (0.73) Uniformità Ud min/max : 1 : 1.86 (0.54)

Pagina 5/18 Relux1.rdf

Numero progetto : 1

Data : 19.01.2019

1.2 Risultati calcolo, strada principale 340

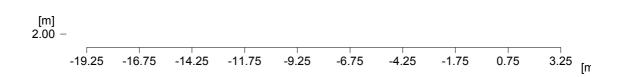
1.2.2 Tabella, Strada (Luminanza)

[m] 7.33 -	0.73	0 <u>.7</u> 6	0 <u>.7</u> 6	0.73	0 <u>.6</u> 9	0 <u>.6</u> 7	0 <u>.6</u> 6	(0 <u>.6</u> 5)	0 <u>.6</u> 7	0 <u>.7</u> 1
6.00 -	0 <u>.9</u> 3	0 <u>.9</u> 6	0 <u>.9</u> 2	0 <u>.8</u> 8	0 <u>.8</u> 6	0 <u>.8</u> 5	0 <u>.8</u> 3	0 <u>.8</u> 4	0 <u>.8</u> 9	0 <u>.9</u> 4
4.67 -	1.24	1 <u>.2</u> 6	1.22	1 <u>.1</u> 9	1 <u>.1</u> 8	1 <u>.1</u> 7	1 <u>.1</u> 2	1 <u>.1</u> 7	1 <u>.2</u> 1	1 <u>.2</u> 6
3.33 -	1 <u>.8</u> 1	1.8	1 <u>.6</u> 9	1 <u>.6</u> 2	<u>1.6</u>	1 <u>.5</u> 5	1 <u>.5</u> 3	1 <u>.6</u> 3	1 <u>.7</u> 3	1 <u>.8</u> 1
2.00 -	2 <u>.5</u> 8	2 <u>.5</u> 4	2 <u>.3</u> 5	2 <u>.1</u> 8	2 <u>.0</u> 6	2 <u>.0</u> 6	2 <u>.1</u> 8	2 <u>.2</u> 9	2.44	2 <u>.5</u> 5
0.67 -	2.62	2.58	2.4	2 <u>.2</u> 3	2 <u>.1</u> 1	2 <u>.1</u> 2	2 <u>.2</u> 4	2 <u>.3</u> 7	2 <u>.5</u> 3	[2 <u>.6</u> 4]
	1.25	3.75	6.25	8.75	11.25	13.75	16.25	18.75	21.25	23.75 [

Posizione osservatore 1 : x = -60, y = 2, z = 1.5 (dx = 61.25)

Luminanza mediaLm: 1.53 cd/m²Luminanza minimaLmin: 0.65 cd/m²Uniformità totale UoLmin/Lm: 0.43Uniformità longitudinale UILlmin/Llmax: 0.8Aumento della soglia di percezioneTI: 15 %

Uniformità Uo min/media : 1 : 2.35 (0.43) Uniformità Ud min/max : 1 : 4.06 (0.25)


Relux1.rdf Pagina 6/18

Numero progetto : 1

Data : 19.01.2019

1.2 Risultati calcolo, strada principale 340

1.2.3 Tabella, Strada (TI)

Posizione osservatore 1 : x = -19.3, y = 2, z = 1.5 (dx = 0.00)

Aumento della soglia di percezione TI : 15 %

Uniformità Uo min/media : 1 : 13.1 (0.08) Uniformità Ud min/max : 1 : 28.6 (0.04)

Relux1.rdf Pagina 7/18

Numero progetto : 1

Data : 19.01.2019

1.2 Risultati calcolo, strada principale 340

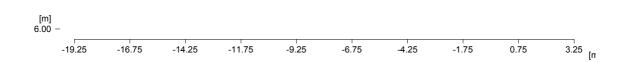
1.2.4 Tabella, Strada (Luminanza)

[m] 7.33 ¬	0 <u>.8</u> 2	0 <u>.8</u> 5	0 <u>.8</u> 4	0 <u>.7</u> 9	0 <u>.7</u> 5	0 <u>.7</u> 3	0 <u>.7</u> 3	(0 <u>.7</u> 2)	0 <u>.7</u> 5	0 <u>.7</u> 9
6.00 -	1 <u>.1</u> 2	1 <u>.1</u> 3	1 <u>.0</u> 8	1 <u>.0</u> 2	0 <u>.9</u> 8	0 <u>.9</u> 7	0 <u>.9</u> 3	0 <u>.9</u> 7	1 <u>.0</u> 4	1 <u>.0</u> 9
4.67 -	1 <u>.6</u> 5	1 <u>.6</u> 1	1.5	1 <u>.4</u> 3	1 <u>.4</u> 1	1 <u>.3</u> 7	1 <u>.3</u> 3	1 <u>.4</u> 2	1.5	1 <u>.5</u> 7
3.33 -	2 <u>.4</u> 6	2 <u>.3</u> 7	2 <u>.1</u> 5	1 <u>.9</u> 9	<u>1.9</u>	1 <u>.8</u> 7	1 <u>.9</u> 3	2 <u>.0</u> 7	2 <u>.2</u> 2	2 <u>.3</u> 1
2.00 -	2 <u>.6</u> 9	2 <u>.6</u> 6	2 <u>.4</u> 8	2 <u>.2</u> 9	2 <u>.1</u> 3	2 <u>.1</u> 2	2 <u>.2</u> 4	2.4	2 <u>.5</u> 8	[2 <u>.7</u> 2]
0.67	2	2 <u>.0</u> 8	2 <u>.0</u> 2	1 <u>.9</u> 4	1 <u>.8</u> 5	1 <u>.8</u> 2	1 <u>.8</u> 4	1.9	2 <u>.0</u> 4	2 <u>.1</u> 6
	1.25	3.75	6.25	8.75	11.25	13.75	16.25	18.75	21.25	23.75 [

Posizione osservatore 2 : x = -60, y = 6, z = 1.5 (dx = 61.25)

Luminanza mediaLm: 1.64 cd/m²Luminanza minimaLmin: 0.72 cd/m²Uniformità totale UoLmin/Lm: 0.44Uniformità longitudinale UILlmin/Llmax: 0.82Aumento della soglia di percezioneTI: 9 %

Uniformità Uo min/media : 1 : 2.28 (0.44) Uniformità Ud min/max : 1 : 3.8 (0.26)


Relux1.rdf Pagina 8/18

Numero progetto : 1

Data : 19.01.2019

1.2 Risultati calcolo, strada principale 340

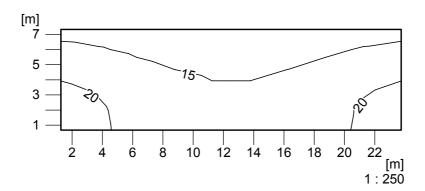
1.2.5 Tabella, Strada (TI)

Posizione osservatore 2 : x = -19.3, y = 6, z = 1.5 (dx = 0.00)

Aumento della soglia di percezione TI : 9 %

 Uniformità Uo
 min/media
 : 1 : 9.67 (0.1)

 Uniformità Ud
 min/max
 : 1 : 23.1 (0.04)


Relux1.rdf Pagina 9/18

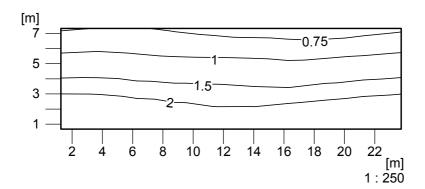
Numero progetto : 1

Data : 19.01.2019

1.2 Risultati calcolo, strada principale 340

1.2.6 Rappresentazione isolinee, Strada (E orizzontale)

Illuminamento [lx]


Relux1.rdf Pagina 10/18

Numero progetto : 1

Data : 19.01.2019

1.2 Risultati calcolo, strada principale 340

1.2.7 Rappresentazione isolinee, Strada (Luminanza)

Luminanza [cd/m²]

Posizione osservatore 1 : x = -60, y = 2, z = 1.5 (dx = 61.25)

Luminanza mediaLm: 1.53 cd/m²Luminanza minimaLmin: 0.65 cd/m²Uniformità totale UoLmin/Lm: 0.43Uniformità longitudinale IIILmin/Lmax: 0.8

Uniformità longitudinale UI LImin/LImax : 0.8
Aumento della soglia di percezione TI : 15 %

Relux1.rdf Pagina 11/18

Numero progetto : 1

Data : 19.01.2019

1.2 Risultati calcolo, strada principale 340

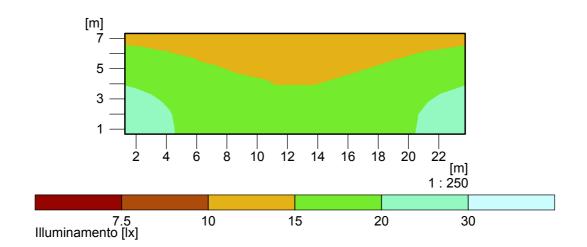
1.2.8 Rappresentazione isolinee, Strada (Luminanza)

Luminanza [cd/m²]

Posizione osservatore 2 : x = -60, y = 6, z = 1.5 (dx = 61.25)

Luminanza mediaLm: 1.64 cd/m²Luminanza minimaLmin: 0.72 cd/m²Uniformità totale UoLmin/Lm: 0.44Uniformità longitudinale UILlmin/Llmax: 0.82Aumento della soglia di percezioneTI: 9 %

Uniformità Uo min/media : 1 : 2.28 (0.44) Uniformità Ud min/max : 1 : 3.8 (0.26)


Relux1.rdf Pagina 12/18

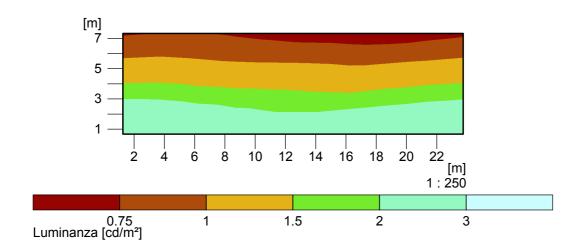
Numero progetto : 1

Data : 19.01.2019

1.2 Risultati calcolo, strada principale 340

1.2.9 Falsi Colori, Strada (E orizzontale)

Altezza del piano di riferimento : 0.00 m Illuminamento medio Em : 16.5 lx Illuminamento minimo Emin : 12.1 lx Illuminamento massimo Emax : 22.4 lx Uniformità Uo min/media : 1 : 1.37 (0.73) : 1 : 1.86 (0.54) Uniformità Ud min/max


Relux1.rdf Pagina 13/18

Numero progetto : 1

Data : 19.01.2019

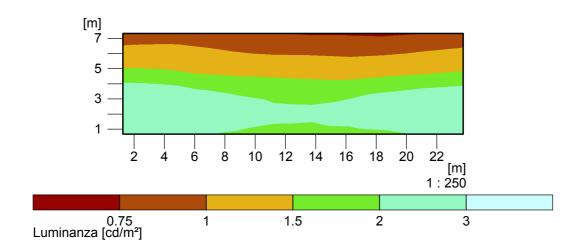
1.2 Risultati calcolo, strada principale 340

1.2.10 Falsi Colori, Strada (Luminanza)

Posizione osservatore 1 : x = -60, y = 2, z = 1.5 (dx = 61.25)

Luminanza mediaLm: 1.53 cd/m²Luminanza minimaLmin: 0.65 cd/m²Uniformità totale UoLmin/Lm: 0.43Uniformità longitudinale UILlmin/Llmax: 0.8Aumento della soglia di percezioneTI: 15 %

Uniformità Uo min/media : 1 : 2.35 (0.43) Uniformità Ud min/max : 1 : 4.06 (0.25)


Relux1.rdf Pagina 14/18

Numero progetto : 1

Data : 19.01.2019

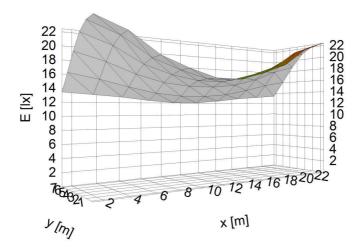
1.2 Risultati calcolo, strada principale 340

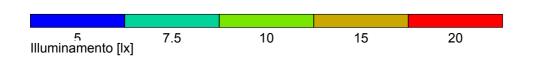
1.2.11 Falsi Colori, Strada (Luminanza)

Posizione osservatore 2 : x = -60, y = 6, z = 1.5 (dx = 61.25)

Luminanza mediaLm: 1.64 cd/m²Luminanza minimaLmin: 0.72 cd/m²Uniformità totale UoLmin/Lm: 0.44Uniformità longitudinale UILlmin/Llmax: 0.82Aumento della soglia di percezioneTI: 9 %

Uniformità Uo min/media : 1 : 2.28 (0.44) Uniformità Ud min/max : 1 : 3.8 (0.26)

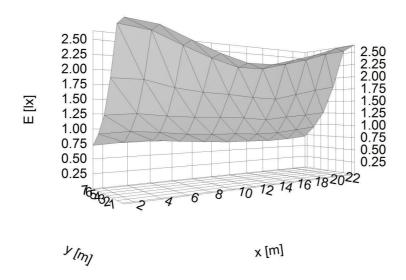

Relux1.rdf Pagina 15/18

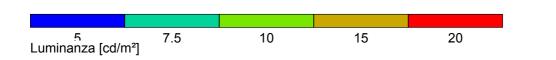

Numero progetto : 1

Data : 19.01.2019

1.2 Risultati calcolo, strada principale 340

1.2.12 Montagne 3D, Strada (E orizzontale)

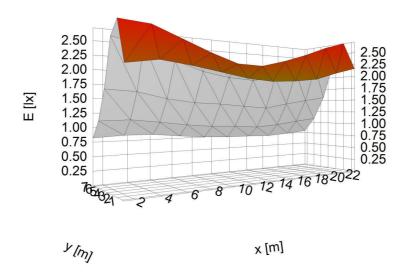

Relux1.rdf Pagina 16/18


Numero progetto : 1

Data : 19.01.2019

1.2 Risultati calcolo, strada principale 340

1.2.13 Montagne 3D, Strada (Luminanza)


Relux1.rdf Pagina 17/18

Numero progetto : 1

Data : 19.01.2019

1.2 Risultati calcolo, strada principale 340

1.2.14 Montagne 3D, Strada (Luminanza)

Relux1.rdf Pagina 18/18

Numero progetto

: 19.01.2019 Data

Dati punti luce 1

Philips Lighting, BGS204 T25 1 xLED149-4S/830 DM50 (!)

1.1.1 Pagina dati

Marca: Philips Lighting

BGS204 T25 1 xLED149-4S/830 DM50 other

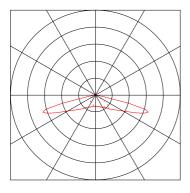
Dati punti luce Sorgenti:

: 1 Rendimento punto luce: 85% Quantità Rendimento punto luce : 110.02 lm/W

Classificazione : A20 ↓100.0% ↑0.0%

CIE Flux Codes : 27 63 97 100 85

Abbagliamento : G*3 / D6

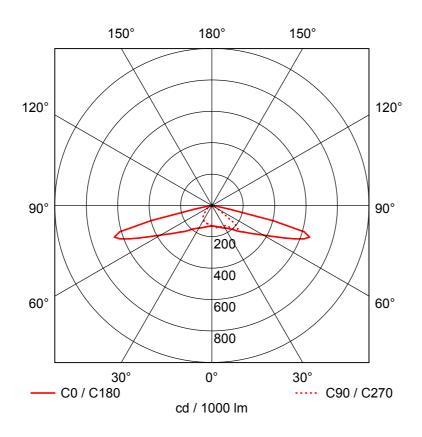

Potenza : 46.2 W Nome

Temp. Di Colore : -

Flusso luminoso : 5980 lm

Flusso luminoso : 5083 lm

Dimensioni : 705 mm x 355 mm x 100 mm


Pagina 1/8 Relux1.rdf

Numero progetto : 1

Data : 19.01.2019

1.1 Philips Lighting, BGS204 T25 1 xLED149-4S/830 DM50 (!)

1.1.2 CDL

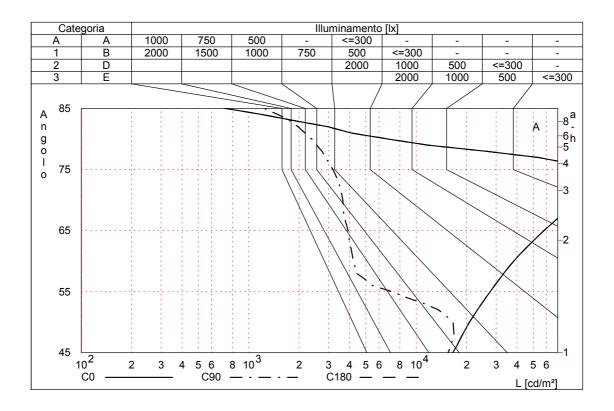
Marca : Philips Lighting Rendimento : 85%

Codice :! Rendimento punto luce : 110.02 lm/W (A20)
Nome punto luce : BGS204 T25 1 xLED149-4S/83@istrib. della luce : simm. a C90-C270

DM50 Angolo fascio luminoso : 150.9° C0-C180

Accessori : 1 x LED149-4S/830 46.2 W / 5980 lm -- C90 Dimensioni : L 705 mm x L 355 mm x H 100 mm -- C270

Nome file : generated_directly_from_database_s


Relux1.rdf Pagina 2/8

Numero progetto : 1

Data : 19.01.2019

1.1 Philips Lighting, BGS204 T25 1 xLED149-4S/830 DM50 (!)

1.1.3 Diagramma Söllner

Marca : Philips Lighting Rendimento : 85%

Codice :! Rendimento punto luce : 110.02 lm/W (A20)
Nome punto luce : BGS204 T25 1 xLED149-4S/83(Distrib. della luce : simm. a C90-C270

DM50 Angolo fascio luminoso : 150.9° C0-C180

Accessori : 1 x LED149-4S/830 46.2 W / 5980 lm -- C90 Dimensioni : L 705 mm x L 355 mm x H 100 mm -- C270

Nome file : generated_directly_from_database_s

Relux1.rdf Pagina 3/8

Data : 19.01.2019

Philips Lighting, BGS204 T25 1 xLED149-4S/830 DM50 (!)

1.1.4 Tabella luminanza

	C0	C15	C30	C45	C60	C75	C90	C105	C120	C135	C150	C165
65°	58027	73795	72179	7611	4705	4206	3928	4206	4705	7611	72179	73795
70°	922911	34832]	44436	5169	4710	4236	3647	4236	4710	5169	44436[1	34832]
75°	104314	119170	7380	4327	4098	3509	3188	3509	4098	4327	7380	119170
80°	6787	11822	3621	2997	2799	2659	2376	2659	2799	2997	3621	11822
85°	732	1295	1237	1464	1580	1580	1237	1580	1580	1464	1237	1295
	ſ											
	C180	C195	C210	C225	C240	C255	C270	C285	C300	C315	C330	C345
65°	58027	43654	10168	3683	3219	3056	3033	3056	3219	3683	10168	43654
70°	92291	52161	4335	3131	2857	2627	2612	2627	2857	3131	4335	52161
75°	104314	10605	2656	2314	2124	2030	2107	2030	2124	2314	2656	10605
80°	6787	2291	1385	1187	1131	988	1187	988	1131	1187	1385	2291
85°	732	453	337	285	227	168	110	168	227	285	337	453
Marca : Philips Lighting Rendimento : 85%												
Codice :! Rendimento punto luce												
Nome punto luce : BGS204 T25 1 xLED149-4S/83@Distrib. della luce : simh\naim@9 DM50 Angolo fascio luminoso : 150.9° C0-0												
										. 150.9 C90		50
Dim	nensioni		L 705 m							C27		
Nome file : generated_directly_from_database_s												

Pagina 4/8 Relux1.rdf

Numero progetto

: 19.01.2019 Data

Dati punti luce 1

1.2 Philips Lighting, BGP204 T25 1 xLED120-4S/740 DM10 ()

1.2.1 Pagina dati

Marca: Philips Lighting

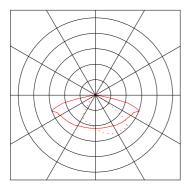
BGP204 T25 1 xLED120-4S/740 DM10 other

Dati punti luce Sorgenti:

: 1 Rendimento punto luce: 88% Quantità Rendimento punto luce : 148.73 lm/W

Classificazione : A30 ↓100.0% ↑0.0%

CIE Flux Codes : 39 74 98 100 88

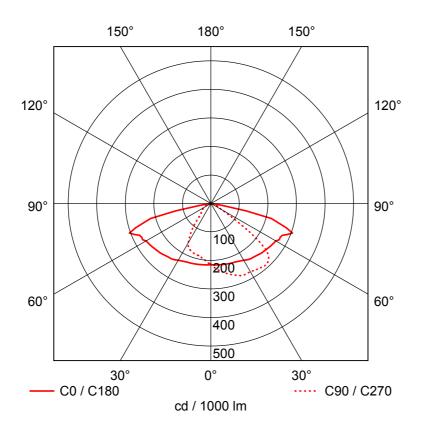

Abbagliamento : G*3 / D6 Nome

Temp. Di Colore : -

: 71 W Flusso luminoso : 12000 lm Potenza

Flusso luminoso : 10560 lm

Dimensioni : 705 mm x 355 mm x 100 mm


Pagina 5/8 Relux1.rdf

Numero progetto : 1

Data : 19.01.2019

1.2 Philips Lighting, BGP204 T25 1 xLED120-4S/740 DM10 ()

1.2.2 CDL

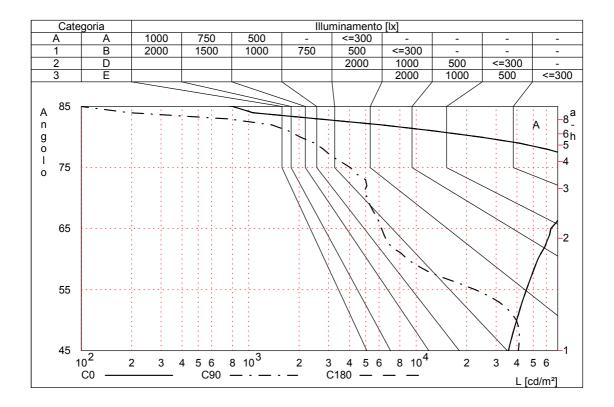
Marca : Philips Lighting Rendimento : 88%

Codice : Rendimento punto luce : 148.73 lm/W (A30)
Nome punto luce : BGP204 T25 1 xLED120-4S/74@istrib. della luce : simm. a C90-C270

DM10 Angolo fascio luminoso : 145.1° C0-C180

Accessori : 1 x LED120-4S/740 71 W / 12000 lm 48.4° C90 Dimensioni : L 705 mm x L 355 mm x H 100 mm -- C270

Nome file : generated_directly_from_database_s


Relux1.rdf Pagina 6/8

Numero progetto : 1

Data : 19.01.2019

1.2 Philips Lighting, BGP204 T25 1 xLED120-4S/740 DM10 ()

1.2.3 Diagramma Söllner

Marca : Philips Lighting Rendimento : 88%

Codice : Rendimento punto luce : 148.73 lm/W (A30) Nome punto luce : BGP204 T25 1 xLED120-4S/74/Distrib. della luce : simm. a C90-C270

DM10 Angolo fascio luminoso : 145.1° C0-C180

Accessori : 1 x LED120-4S/740 71 W / 12000 lm 48.4° C90 Dimensioni : L 705 mm x L 355 mm x H 100 mm -- C270

Nome file : generated_directly_from_database_s

Relux1.rdf Pagina 7/8

Data : 19.01.2019

1.2 Philips Lighting, BGP204 T25 1 xLED120-4S/740 DM10 ()

1.2.4 Tabella luminanza

Nome file

	C0	C15	C30	C45	C60	C75	C90	C105	C120	C135	C150	C165	
65°	63680	96451	110895	61849	12257	6283	6211	6283	12257	61849	110895	96451	
70°	90069	123825	143467	19761	6615	5293	5147	5293	6615	19761	143467	123825	
75°	9240([1	145289]	71498	6606	4624	4157	4043	4157	4624	6606	7149{[1	45289]	
80°	24208	31737	7705	3241	2375	2083	2030	2083	2375	3241	7705	31737	
85°	804	921	688	466	233	0	0	0	233	466	688	921	
	1												
	C180	C195	C210	C225	C240	C255	C270	C285	C300	C315	C330	C345	
65°	63680	39289	11113	5687	5807	6211	6259	6211	5807	5687	11113	39289	
70°	90069	38197	6882	4910	5147	5646	5676	5646	5147	4910	6882	38197	
75°	92403	19080	4353	4082	4431	5130	4820	5130	4431	4082	4353	19080	
80°	24208	5271	2551	2551	3013	3762	3013	3762	3013	2551	2551	5271	
85°	804	688	688	688	1037	1037	350	1037	1037	688	688	688	
Mar	Marca : Philips Lig		ighting			Rendime			: 88%				
Coc		. :	D.O.D.O.S.	. === :	. =5 455		Rendimento punto luce				: 148.73 lm/W (A30)		
Nor	Nome punto luce : BGP204 T25 1 xLED120-4S/74@istrib. della luce DM10 Angolo fascio luminoso								: simhunair@nozac[cod/m²]				
Acc	essori	_	ואול 1 x LED	120-45/	740 71 V			ascio iur	TIINOSO	: 145.1° C0-C180 48.4° C90			
	ensioni	=		05 mm x L 355 mm x H 100 mm C270									

: generated_directly_from_database_s

Pagina 8/8 Relux1.rdf

			TA	BELLE DI (CALCOLO	DELLA C.D	.T.	
Quadro Q2								
	T.			Strada Pr				
TRATTO	k	ro	L(m)	N	I(A)	S(mmq)	dv	DV %
Q2 1	1,3			10	0,6	10	0,35	
1 4 4 7	1,3 1,3			9	0,6 0,6	10 10	1,02 0,85	
710	1,3	0,018		7	0,6	10	0,80	
1013	1,3	0,018		6	0,6	6	1,14	
1316	1,3	0,018		5	0,6	6	0,89	
1619	1,3			4	0,6	6		
1922	1,3	0,018		3	0,6	4		
2225	1,3	0,018	81	2	0,6	4	0,57	
2528	1,3			1	0,6	4	0,28	
lamp. 28	2	0,018	9	1	0,6	2,5	0,08	
		L.,	<u> </u>				totale	3,43
TDATTO	I.	1		Strada Pr				
TRATTO	k	ro 0.010	L(m)	N	I(A)	S(mmq)	dv 0.57	DV %
Q2 1 1 4	1,3 1,3	0,018 0,018		9	0,6 0,6	10 10	0,57 0,91	
1 4 4 7	1,3	0,018		7	0,6	10	0,91	
710	1,3	0,018		6	0,6	6	1,00	
1013	1,3	0,018		5	0,6	6	0,89	
1316	1,3			4	0,6	6	0,76	
1619	1,3			3	0,6	4		
1922	1,3	0,018	81	2	0,6	4	0,57	
2225	1,3			1	0,6	4	- ,- :	
lamp. 25	2	0,018	9	1	0,6	2,5	0,08	
							totale	3,04
					Ouedie O4			
		Linos	Trifoco -	Strada Pro	Quadro Q4	Moroellino	Cacanaa	onno
TRATTO		Lillea	i iiiiase =	Silaua Fio				enna
	k	1						
	k 1.3	ro	L(m)	N	I(A)	S(mmq)	dv	DV %
Q4 7	1,3	ro 0,018	L(m) 5	N 12	I(A) 0,6	S(mmq) 10	dv 0,08	
	1,3 1,3	ro 0,018 0,018	L(m) 5 81	N	I(A) 0,6 0,6	S(mmq)	dv	
Q4 7 710	1,3	ro 0,018 0,018 0,018	L(m) 5 81 81	N 12 9 8	I(A) 0,6	S(mmq) 10 10	dv 0,08 1,02 0,91	
Q4 7 710 1013	1,3 1,3 1,3	ro 0,018 0,018 0,018 0,018	L(m) 5 81 81 81	N 12 9 8	I(A) 0,6 0,6 0,6	S(mmq) 10 10 10 10	dv 0,08 1,02 0,91 0,80	
Q4 7 710 1013 1316 1619 1922	1,3 1,3 1,3 1,3	ro 0,018 0,018 0,018 0,018 0,018 0,018	L(m) 5 81 81 81 81	N 12 9 8 7	I(A) 0,6 0,6 0,6 0,6	S(mmq) 10 10 10 10	dv 0,08 1,02 0,91 0,80 1,14	
Q4 7 710 1013 1316 1619 1922 2225	1,3 1,3 1,3 1,3 1,3 1,3 1,3	ro 0,018 0,018 0,018 0,018 0,018 0,018 0,018	L(m) 5 81 81 81 81 81 81	N 12 9 8 7 6 5 4	I(A) 0,6 0,6 0,6 0,6 0,6 0,6 0,6 0,	S(mmq) 10 10 10 10 6 6	dv 0,08 1,02 0,91 0,80 1,14 0,95 0,76	
Q4 7 710 1013 1316 1619 1922 2225 2528	1,3 1,3 1,3 1,3 1,3 1,3 1,3 1,3	0,018 0,018 0,018 0,018 0,018 0,018 0,018 0,018	L(m) 5 81 81 81 81 81 81 81	N 12 9 8 7 6 5 4 3	I(A) 0,6 0,6 0,6 0,6 0,6 0,6 0,6 0,	S(mmq) 10 10 10 10 6 6 6 4	dv 0,08 1,02 0,91 0,80 1,14 0,95 0,76 0,85	
Q4 7 710 1013 1316 1619 1922 2225 2528 2831	1,3 1,3 1,3 1,3 1,3 1,3 1,3 1,3 1,3	0,018 0,018 0,018 0,018 0,018 0,018 0,018 0,018 0,018	L(m) 5 81 81 81 81 81 81 81	N 12 9 8 7 6 5 4 3 2	I(A) 0,6 0,6 0,6 0,6 0,6 0,6 0,6 0,	S(mmq) 10 10 10 10 6 6 6 4 4	dv 0,08 1,02 0,91 0,80 1,14 0,95 0,76 0,85	
Q4 7 710 1013 1316 1619 1922 2225 2528 2831 3134	1,3 1,3 1,3 1,3 1,3 1,3 1,3 1,3 1,3 1,3	0,018 0,018 0,018 0,018 0,018 0,018 0,018 0,018 0,018 0,018	L(m) 5 81 81 81 81 81 81 81 81	N 12 9 8 7 6 5 4 4 3 2 1	I(A) 0,6 0,6 0,6 0,6 0,6 0,6 0,6 0,	S(mmq) 10 10 10 10 6 6 6 4 4	dv 0,08 1,02 0,91 0,80 1,14 0,95 0,76 0,85 0,57	
Q4 7 710 1013 1316 1619 1922 2225 2528 2831	1,3 1,3 1,3 1,3 1,3 1,3 1,3 1,3 1,3	0,018 0,018 0,018 0,018 0,018 0,018 0,018 0,018 0,018 0,018	L(m) 5 81 81 81 81 81 81 81 81	N 12 9 8 7 6 5 4 4 3 2 1	I(A) 0,6 0,6 0,6 0,6 0,6 0,6 0,6 0,	S(mmq) 10 10 10 10 6 6 6 4 4	dv 0,08 1,02 0,91 0,80 1,14 0,95 0,76 0,85 0,57 0,28 0,08	DV %
Q4 7 710 1013 1316 1619 1922 2225 2528 2831 3134	1,3 1,3 1,3 1,3 1,3 1,3 1,3 1,3 1,3 1,3	0,018 0,018 0,018 0,018 0,018 0,018 0,018 0,018 0,018 0,018	L(m) 5 81 81 81 81 81 81 81 81	N 12 9 8 7 6 5 4 4 3 2 1	I(A) 0,6 0,6 0,6 0,6 0,6 0,6 0,6 0,	S(mmq) 10 10 10 10 6 6 6 4 4	dv 0,08 1,02 0,91 0,80 1,14 0,95 0,76 0,85 0,57	
Q4 7 710 1013 1316 1619 1922 2225 2528 2831 3134	1,3 1,3 1,3 1,3 1,3 1,3 1,3 1,3 1,3 1,3	0,018 0,018 0,018 0,018 0,018 0,018 0,018 0,018 0,018 0,018	L(m) 5 81 81 81 81 81 81 81 81	N 12 9 8 7 6 5 4 4 3 2 1	I(A) 0,6 0,6 0,6 0,6 0,6 0,6 0,6 0,	S(mmq) 10 10 10 10 6 6 6 4 4	dv 0,08 1,02 0,91 0,80 1,14 0,95 0,76 0,85 0,57 0,28 0,08	DV %
Q4 7 710 1013 1316 1619 1922 2225 2528 2831 3134	1,3 1,3 1,3 1,3 1,3 1,3 1,3 1,3 1,3 1,3	0,018 0,018 0,018 0,018 0,018 0,018 0,018 0,018 0,018 0,018	L(m) 5 81 81 81 81 81 81 81 81	N 12 9 8 7 6 5 4 3 2 1 1	I(A) 0,6 0,6 0,6 0,6 0,6 0,6 0,6 0,	S(mmq) 10 10 10 10 6 6 6 4 4	dv 0,08 1,02 0,91 0,80 1,14 0,95 0,76 0,85 0,57 0,28 0,08	DV %
Q4 7 710 1013 1316 1619 1922 2225 2528 2831 3134	1,3 1,3 1,3 1,3 1,3 1,3 1,3 1,3 1,3 1,3	ro 0,018 0,018 0,018 0,018 0,018 0,018 0,018 0,018 0,018 0,018	L(m) 5 81 81 81 81 81 81 81 9	N 12 9 8 7 6 5 4 3 2 1 1	I(A) 0,6 0,6 0,6 0,6 0,6 0,6 0,6 0,	S(mmq) 10 10 10 10 6 6 4 4 4 2,5	dv 0,08 1,02 0,91 0,80 1,14 0,95 0,76 0,85 0,57 0,28 0,08 totale	DV %
Q4 7 710 1013 1316 1619 1922 2225 2528 2831 3134	1,3 1,3 1,3 1,3 1,3 1,3 1,3 1,3 1,3 1,3	ro 0,018 0,018 0,018 0,018 0,018 0,018 0,018 0,018 0,018 0,018	L(m) 5 81 81 81 81 81 81 81 9	N 12 9 8 7 6 5 4 3 2 1 1	I(A) 0,6 0,6 0,6 0,6 0,6 0,6 0,6 0,	S(mmq) 10 10 10 6 6 4 4 2,5	dv 0,08 1,02 0,91 0,80 1,14 0,95 0,76 0,85 0,57 0,28 0,08 totale	DV %
Q4 7 710 1013 1316 1619 1922 2225 2528 2831 3134 lamp. 34	1,3 1,3 1,3 1,3 1,3 1,3 1,3 1,3 1,3 2	ro 0,018 0,0	L(m) 5 81 81 81 81 81 81 81 9	N 12 9 8 7 6 5 4 3 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	I(A) 0,6 0,6 0,6 0,6 0,6 0,6 0,6 0,	S(mmq) 10 10 10 10 6 6 4 4 4 2,5	dv 0,08 1,02 0,91 0,80 1,14 0,95 0,57 0,28 0,08 totale	3,38
Q4 7 710 1013 1316 1619 1922 2225 2528 2831 3134 lamp. 34	1,3 1,3 1,3 1,3 1,3 1,3 1,3 1,3 2	ro	L(m) 5 81 81 81 81 81 81 81 81 81 81 81 81 61 61 69	N 12 9 8 7 6 5 4 3 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	I(A) 0,6 0,6 0,6 0,6 0,6 0,6 0,6 0,	S(mmq) 10 10 10 10 6 6 4 4 2,5	dv 0,08 1,02 0,91 0,80 1,14 0,95 0,76 0,85 0,57 0,28 0,08 totale	3,38
Q4 7 710 1013 1316 1619 1922 2225 2528 2831 3134 lamp. 34 TRATTO Q8 3 36 69	1,3 1,3 1,3 1,3 1,3 1,3 1,3 1,3 1,3 1,3	ro	L(m) 5 81 81 81 81 81 81 81 81 81 81 81 81 81	N 12 9 8 7 6 5 4 3 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	I(A) 0,6 0,6 0,6 0,6 0,6 0,6 0,6 0,	S(mmq) 10 10 10 10 6 6 4 4 2,5	dv 0,08 1,02 0,91 0,80 1,14 0,95 0,76 0,85 0,57 0,28 0,08 totale dv 0,67 0,71 0,64	3,38
Q4 7 710 1013 1316 1619 1922 2225 2528 2831 3134 lamp. 34 TRATTO Q8 3 36 69 912	1,3 1,3 1,3 1,3 1,3 1,3 1,3 1,3 1,3 1,3	ro	L(m) 5 81 81 81 81 81 81 81 81 81 81 81 81 81	N 12 9 8 7 6 5 4 3 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	I(A) 0,6 0,6 0,6 0,6 0,6 0,6 0,6 0,6 0,6 0,	S(mmq) 10 10 10 10 6 6 4 4 2,5	dv 0,08 1,02 0,91 0,80 1,14 0,95 0,76 0,85 0,57 0,28 0,08 totale dv 0,67 0,71 0,64 0,91	3,38
Q4 7 710 1013 1316 1619 1922 2225 2528 2831 3134 lamp. 34 TRATTO Q8 3 36 69 912 1215	k 1,3 1,3 1,3 1,3 1,3 1,3 1,3 1,3 1,3 1,3	ro	L(m) 5 81 81 81 81 81 81 81 81 81 81 81 81 81	N 12 9 8 7 6 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	I(A)	S(mmq) 10 10 10 10 6 6 4 4 2,5	dv 0,08 1,02 0,91 0,80 1,14 0,95 0,76 0,85 0,57 0,28 0,08 totale dv 0,67 0,71 0,64 0,91 0,80	3,38
Q4 7 710 1013 1316 1619 1922 2225 2528 2831 3134 lamp. 34 TRATTO Q8 3 36 69 912 1215 1518	k 1,3 1,3 1,3 1,3 1,3 1,3 1,3 1,3 1,3 1,3	ro	L(m) 5 81 81 81 81 81 81 81 81 81 81 81 81 81	N 12 9 8 7 6 5 4 3 2 1 1 1 1 **Property of the second sec	I(A)	S(mmq) 10 10 10 10 6 6 4 4 2,5	dv 0,08 1,02 0,91 0,80 1,14 0,95 0,57 0,28 0,08 totale vatore Vita dv 0,67 0,91 0,80 0,91 0,80 0,64 0,91 0,80 0,64	3,38
Q4 7 710 1013 1316 1619 1922 2225 2528 2831 3134 lamp. 34 TRATTO Q8 3 36 69 912 1215 1518 1821	k 1,3 1,3 1,3 1,3 1,3 1,3 1,3 1,3 1,3 1,3	Control (Control (Con	L(m) 5 81 81 81 81 81 81 81 81 81 81 81 81 81	N 12 9 8 7 6 5 4 3 2 1 1 1 1 **Property of the second se	I(A)	S(mmq) 10 10 10 10 6 6 4 4 2,5 slee Don Sal S(mmq) 16 16 10 10 10 10 10	dv 0,08 1,02 0,91 0,80 0,67 0,28 dv 0,67 0,71 0,64 0,91 0,80 0,64 0,53	3,38
Q4 7 710 1013 1316 1619 1922 2225 2528 2831 3134 lamp. 34 TRATTO Q8 3 36 69 912 1215 1518 1821 2124	k 1,3 1,3 1,3 1,3 1,3 1,3 1,3 1,3 1,3 1,	Lin ro 0,018	L(m) 5 81 81 81 81 81 81 81 81 81 81 81 81 81	N 12 9 8 7 6 5 4 3 2 1 1 1 1 **Property of the second se	I(A)	S(mmq) 10 10 10 10 6 6 6 4 4 2,5 slee Don Sal S(mmq) 16 16 10 10 10 10 6	dv 0,08 1,02 0,91 0,80 0,67 0,28 0,08 totale vatore Vita dv 0,67 0,80 0,80 0,64 0,53 0,76	3,38
Q4 7 710 1013 1316 1619 1922 2225 2528 2831 3134 lamp. 34 TRATTO Q8 3 36 69 912 1215 1518 1821 2124 2427	k 1,3 1,3 1,3 1,3 1,3 1,3 1,3 1,3 1,3 1,	Lin ro 0,018	L(m) 5 81 81 81 81 81 81 81 81 81 81 81 81 81	N 12 9 8 7 6 5 4 3 2 1 1 1 1 **Property of the second of	Quadro Q8 a Provincia I(A) Q,6 Q,6 Q,6 Q,6 Q,6 Q,6 Q,6 Q,6 Q,6 Q,	S(mmq) 10 10 10 10 6 6 6 4 4 2,5 S(mmq) 16 16 16 10 10 10 6 6 6 6 6 6 6 6 6 6 6	dv 0,08 1,02 0,91 0,80 0,76 0,85 0,57 0,28 0,08 totale dv 0,67 0,71 0,64 0,91 0,80 0,64 0,53 0,76 0,62	3,38
Q4 7 710 1013 1316 1619 1922 2225 2528 2831 3134 lamp. 34 TRATTO Q8 3 36 69 912 1215 1518 1821 2124 2427 2730	k 1,3 1,3 1,3 1,3 1,3 1,3 1,3 1,3 1,3 1,	Lin ro 0,018	L(m) 5 81 81 81 81 81 81 81 81 81 81 81 81 81	N 12 9 8 7 6 5 4 3 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Quadro Q8 a Provincia I(A) 0,6 0,6 0,6 0,6 0,6 0,6 0,6 0,6 0,6 0,	S(mmq)	dv 0,08 1,02 0,91 0,80 0,76 0,85 0,57 0,28 0,08 totale dv 0,67 0,71 0,64 0,91 0,80 0,64 0,53 0,76 0,62 0,55	3,38
Q4 7 710 1013 1316 1619 1922 2225 2528 2831 3134 lamp. 34 TRATTO Q8 3 36 69 912 1215 1518 1821 2124 2427 2730 3033	k 1,3 1,3 1,3 1,3 1,3 1,3 1,3 1,3 1,3 1,3	Lin ro 0,018	L(m) 5 81 81 81 81 81 81 81 81 81 81 81 81 81	N 12 9 8 7 6 5 4 3 2 1 1 1 1 8 1° = Strad N 11 10 9 8 7 6 5 4 3 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	I(A)	S(mmq) 10 10 10 10 10 6 6 6 4 4 2,5 S(mmq) 16 16 10 10 10 6 6 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	dv 0,08 1,02 0,91 0,80 0,76 0,62 0,55 0,28	3,38 le DV %
Q4 7 710 1013 1316 1619 1922 2225 2528 2831 3134 lamp. 34 TRATTO Q8 3 36 69 912 1215 1518 1821 2124 2427 2730	k 1,3 1,3 1,3 1,3 1,3 1,3 1,3 1,3 1,3 1,	Lii ro 0,018	L(m) 5 81 81 81 81 81 81 81 81 81 81 81 81 81	N 12 9 8 7 6 5 4 3 2 1 1 1 1 8 1° = Strad N 11 10 9 8 7 6 5 4 3 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Quadro Q8 a Provincia I(A) 0,6 0,6 0,6 0,6 0,6 0,6 0,6 0,6 0,6 0,	S(mmq) 10 10 10 10 10 6 6 6 4 4 2,5 S(mmq) 16 16 10 10 10 6 6 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	dv 0,08 1,02 0,91 0,80 0,76 0,62 0,55 0,28 0,08	3,38 le DV %
Q4 7 710 1013 1316 1619 1922 2225 2528 2831 3134 lamp. 34 TRATTO Q8 3 36 69 912 1215 1518 1821 2124 2427 2730 3033	k 1,3 1,3 1,3 1,3 1,3 1,3 1,3 1,3 1,3 1,3	ro	L(m) 5 81 81 81 81 81 81 81 81 81 81 81 81 81	N 12 9 8 7 6 5 4 3 2 1 1 1 1 8 1° = Strad N 11 10 9 8 7 6 5 4 3 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	I(A)	S(mmq) 10 10 10 10 6 6 6 4 4 2,5	dv 0,08 1,02 0,91 0,80 1,14 0,95 0,76 0,68 0,67 0,71 0,64 0,53 0,76 0,62 0,55 0,28 0,08 totale	3,38 le DV %

Pagina 2 di 2

TRATTO	k	ro	L(m)	N	I(A)	S(mmq)	dv	DV %
Q8 3	1,3	0,018	69	11	0,6	16	0,67	
36	1,3	0,018	81	10	0,6	16	0,71	
69	1,3	0,018	81	9	0,6	16	0,64	
912	1,3	0,018	81	8	0,6	10	0,91	
1215	1,3	0,018	81	7	0,6	10	0,80	
1518	1,3	0,018	81	6	0,6	10	0,68	
1821	1,3	0,018	81	5	0,6	10	0,57	
2124	1,3	0,018	81	4	0,6	6	0,76	
2427	1,3	0,018	81	3	0,6	6	0,57	
2730	1,3	0,018	70	2	0,6	4	0,49	
3033	1,3	0,018	87	1	0,6	4	0,31	
lamp. 33	2	0,018	9	1	0,6	2,5	0,08	
							totale	3,26

UniStreet - La gamma semplice e conveniente per l'illuminazione stradale

UniStreet

UniStreet è un apparecchio LED altamente efficiente che, con un costo iniziale relativamente contenuto, offre un significativo risparmio rispetto all'illuminazione convenzionale delle strade, garantendo un ammortamento completo nel breve periodo. Disponibile in un'ampia scelta di pacchetti lumen, UniStreet rende possibile la sostituzione punto a punto delle sorgenti luminose e degli apparecchi convenzionali obsoleti. Questo apparecchio compatto e sottile è realizzato in materiali riciclati di qualità e, trattandosi di una soluzione LED, richiede poca manutenzione. Versione Core per progetti con volumi elevati a fronte di un budget iniziale relativamente ridotto. Offre una gamma limitata di ottiche. Versione Performer per clienti che preparano grossi progetti di rinnovo, orientata al TCO

Vantaggi

- · Notevole risparmio energetico a fronte di un investimento limitato
- Sostituzione punto a punto degli apparecchi tradizionali SOX, PL-L, SON o HPL
- Manutenzione ridotta

Caratteristiche

- · Ampia scelta di pacchetti lumen, da 1.000 fino a 15.000 lumen
- · Apparecchio compatto e sottile realizzato in materiali riciclati di qualità
- · Sistema di imballaggio per prodotti sfusi per ridurre i costi e lo spreco di materiali

Applicazione

- Zone residenziali
- Strade secondarie
- Strade principali

Specifiche

Tipo	BGS/BGP202 (versione mini)
	BGS/BGP203 (versione small)
	BGS/BGP243 (versione medium)
	BGS/BGP204 (versione large)
Sorgente luminosa	Modulo LED integrale
Potenza	da 5,9 a 144 W (a seconda della versione)
Flusso luminoso	Core
	Versione mini: da 1.500 a 7.100 lm (sistema)
	Versione media: da 8.000 a 15.000 lm (sistema)
	Performer
	Versione mini: da 700 a 5.300 lm (sistema)
	Versione media: da 5.000 a 11.700 lm (sistema)
	Versione grande: da 5.000 a 20.400 lm (sistema)
Efficacia apparecchio	Fino a 155 lm/W (a seconda della versione)
Temperatura di colore	Base:
correlata	Bianco neutro (NW): 4.000 K
	Performer
	Bianco caldo (WW): 3.000 K
	Bianco neutro (NW): 4.000 K
Indice di resa dei colori	NW: 70
	WW: 80
Vita utile	Core min L84B10 - 100.000 ore a 25°C
	Performer min L88B10 a temperatura ambiente di 25°C
Intervallo temperatura	-30 to +35°C (gamma più ampia su richiesta)
operativa	
Driver	Integrato (modulo LED con reattore indipendente)
Tensione di rete	220-240 V / 50-60 Hz
Regolazione del flusso	CityTouch LightWave
	LineSwitch
	LumiStep
	DynaDimmer
	Regolazione del flusso tramite tensione
Opzioni	Interfaccia System Ready
	Presa Nema 5 PIN
	Presa Nema 7 PIN (adatto a SR)
	Emissione luminosa costante (CLO, constant light output)
	Cavo esterno 4, 6, 8, 10, 12, 15, 22m
	Dispositivo di protezione da sovratensione (fino a 10kV)
	Schermo retroilluminazione (BL1 e BL2) per le versioni mini e
	medium
	Schermi esterni
	Concerni Cotorni

Ottica	Versione Core: Distribuzione media (DM) o ampia (DW)
	Versione Performer: Distribuzione stretta (DN10), media (DM10,
	DM11, DM12, DM50), ampia (DW10)
Materiale	Telaio superiore: alluminio pressofuso ad alta pressione
	Copertura elettrica: plastica o alluminio pressofuso ad alta pressione
	Copertura: vetro temperato termicamente, 4 mm
Colore	Telaio superiore: grigio chiaro (RAL7035), Altri colori RAL o AKZO
	Futura disponibili su richiesta
	Copertura elettrica: grigio segnale (RAL7004) or grigio chiaro Alloy
	(RAL7035)
Connessione	Morsettiera con connettori a vite o connettore IP esterno come
	optional
Manutenzione	Apertura con 4 viti
	Philips Service tag consente di identificare il prodotto e fornisce tutte
	le informazioni relative al prodotto stesso
Installazione	Montaggio laterale: Ø 32-48 or 48-60 mm
	Montaggio in cima al palo: Ø 32-48, 48-60 or 76 mm
	Inserto per rubinetto opzionale (riduttore)
	Altezza di montaggio consigliata: da 4 a 18 m
	Angolo di inclinazione standard testa-palo: da +0 a 10°
	Angolo di inclinazione standard ingresso laterale: da+10 a -90°
	Max SCx: BGS203: 0,036 m ²
	BGS204: 0,041 m ²
Compatibilità SR	Per quanto riguarda gli apparecchi a base SR, devono essere
	utilizzati solo componenti/sensori certificati SR (consulta anche:
	http://www.lighting.philips.co.uk/oem-emea/products/driving-
	connected-lighting).
	La compatibilità funzionale di 2 componenti/sensori (certificati SR),
	da utilizzare in combinazione, come anche la possibilità di ignorare
	qualsiasi funzione d'interruttore di linea utilizzata in un apparecchio
	d'illuminazione SR, è rilasciata dal fornitore del componente
	principale/sensore. Per l'uso della presa NEMA 7pin su un
	apparecchio SR è necessaria una verifica completa del sistema. Il
	mancato rispetto di questi consigli può causare il rischio di danni e
	non conformità per i quali Signify non può assumersi alcuna
	responsabilità.

Versions

Approvazione e applicazione	
Codice protezione impatti meccanici	IK08
Controlli e regolazione del flusso	
Regolabile	Si
Informazioni generali	
Ampiezza fascio luminoso	154°
dell'apparecchio	
Marchio CE	CE mark
Colore sorgente luminosa	740 bianco neutro
Tipo copertura ottica/lenti	FG
Driver incluso	Si
Marchio ENEC	ENEC mark
Marchio di Inflammabilità	NO
Sorgente luminosa sostituibile	Si
Numero di unità elettriche	1 unit
Rendimento iniziale (conformità IEC)	
Indice Temperatura di colore correlata	4000 K
Indice Indice di resa dei colori	70
Dati tecnici di illuminazione	
Angolo di inclinazione standard ingresso	0°
laterale	
Angolo standard di inclinazione testa palo	0°
Tasso di emissione luminosa verso l'alto	0
Meccanica e corpo	
Colore	Grigio GR

Condizioni di applicazione

Order Code	Full Product Name	Livello regolazione massimo
31878200	BGP203 LED50/740 II DM D9 48/60A	10%
34898700	BGP203 LED16-4S/740 I DM50 D9 48/60A	0%(limite con dimmer protocollo digitale)
34899400	BGP203 LED16-4S/740 II DM50 D9 48/60A	0%(limite con dimmer protocollo digitale)
34900700	BGP203 LED20-4S/740 I DM50 D9 48/60A	0%(limite con dimmer protocollo digitale)
34901400	BGP203 LED20-4S/740 II DM50 D9 48/60A	0%(limite con dimmer protocollo digitale)
34902100	BGP203 LED30-4S/740 I DM50 D9 48/60A	0%(limite con dimmer protocollo digitale)
34903800	BGP203 LED30-4S/740 II DM50 D9 48/60A	0%(limite con dimmer protocollo digitale)
34904500	BGP203 LED45-4S/740 I DM50 D9 48/60A	0%(limite con dimmer protocollo digitale)
34905200	BGP203 LED45-4S/740 II DM50 D9 48/60A	0%(limite con dimmer protocollo digitale)
34906900	BGP203 LED59-4S/740 I DM50 D9 48/60A	0%(limite con dimmer protocollo digitale)
34907600	BGP203 LED59-4S/740 II DM50 D9 48/60A	0%(limite con dimmer protocollo digitale)
34908300	BGP203 LED79-4S/740 I DM50 D9 48/60A	0%(limite con dimmer protocollo digitale)
34909000	BGP203 LED79-4S/740 II DM50 D9 48/60A	0%(limite con dimmer protocollo digitale)
37224100	BGP204 LED100-4S/740 II DM50 D9 48/60A	0%(limite con dimmer protocollo digitale)
37228900	BGP204 LED139-4S/740 II DM50 D9 48/60A	0%(limite con dimmer protocollo digitale)
37232600	BGP204 LED60-4S/740 II DM50 D9 48/60A	0%(limite con dimmer protocollo digitale)
37225800	BGP204 LED120-4S/740 I DM50 D9 48/60A	0%(limite con dimmer protocollo digitale)
37229600	BGP204 LED149-4S/740 I DM50 D9 48/60A	0%(limite con dimmer protocollo digitale)
37233300	BGP204 LED70-4S/740 I DM50 D9 48/60A	0%(limite con dimmer protocollo digitale)
37223400	BGP204 LED100-4S/740 I DM50 D9 48/60A	0%(limite con dimmer protocollo digitale)
37227200	BGP204 LED139-4S/740 I DM50 D9 48/60A	0%(limite con dimmer protocollo digitale)
37231900	BGP204 LED60-4S/740 I DM50 D9 48/60A	0%(limite con dimmer protocollo digitale)
37226500	BGP204 LED120-4S/740 II DM50 D9 48/60A	0%(limite con dimmer protocollo digitale)
37230200	BGP204 LED149-4S/740 II DM50 D9 48/60A	0%(limite con dimmer protocollo digitale)
31900000	BGP204 LED120/740 I DW D9 48/60A	10%
31918500	BGP204 LED120/740 II DW D9 48/60A	10%
31880500	BGP204 LED80/740 II DM D9 48/60A	10%
31927700	BGP204 LED120/740 II DW DDF2 48/60A	-
31925300	BGP204 LED80/740 II DW DDF2 48/60A	-
37236400	BGP204 LED80-4S/740 II DM50 D9 48/60A	0%(limite con dimmer protocollo digitale)
37235700	BGP204 LED80-4S/740 I DM50 D9 48/60A	0%(limite con dimmer protocollo digitale)
37237100	BGP204 LED90-4S/740 I DM50 D9 48/60A	0%(limite con dimmer protocollo digitale)
37234000	BGP204 LED70-4S/740 II DM50 D9 48/60A	0%(limite con dimmer protocollo digitale)
37238800	BGP204 LED90-4S/740 II DM50 D9 48/60A	0%(limite con dimmer protocollo digitale)
37289000	BGP204 LED140/740 I DM D9 48/60A	10%
37297500	BGP204 LED160/740 II DM D9 48/60A	10%

Order Code	Full Product Name	Livello regolazione massimo
37301900	BGP204 LED170/740 I DM D9 48/60A	10%
37305700	BGP204 LED170/740 I DM DDF2 SRG10 48/60A	-
37282100	BGP204 LED125/740 I DM DDF2 48/60A	-
37290600	BGP204 LED140/740 II DM DDF2 48/60A	-
37298200	BGP204 LED160/740 I DM D9 SRG10 48/60A	10%
37302600	BGP204 LED170/740 II DM DDF2 48/60A	-
37284500	BGP204 LED125/740 II DM DDF2 48/60A	-
37288300	BGP204 LED140/740 I DM DDF2 48/60A	-
37296800	BGP204 LED160/740 II DM DDF2 48/60A	-
37300200	BGP204 LED170/740 I DM DDF2 48/60A	-
37304000	BGP204 LED170/740 I DM D9 SRG10 48/60A	10%
37283800	BGP204 LED125/740 I DM D9 48/60A	10%
37295100	BGP204 LED160/740 I DM D9 48/60A	10%
37299900	BGP204 LED160/740 I DM DDF2 SRG10 48/60A	-
37303300	BGP204 LED170/740 II DM D9 48/60A	10%

Approvazione e applicazione

		Protezione da sovratensione (comune/
Order Code	Full Product Name	differenziale)
31878200	BGP203 LED50/740 II DM D9 48/60A	Philips standard surge protection level kV
34898700	BGP203 LED16-4S/740 I DM50 D9 48/60A	Philips standard surge protection level kV
34899400	BGP203 LED16-4S/740 II DM50 D9 48/60A	Philips standard surge protection level kV
34900700	BGP203 LED20-4S/740 I DM50 D9 48/60A	Philips standard surge protection level kV
34901400	BGP203 LED20-4S/740 II DM50 D9 48/60A	Philips standard surge protection level kV
34902100	BGP203 LED30-4S/740 I DM50 D9 48/60A	Philips standard surge protection level kV
34903800	BGP203 LED30-4S/740 II DM50 D9 48/60A	Philips standard surge protection level kV
34904500	BGP203 LED45-4S/740 I DM50 D9 48/60A	Philips standard surge protection level kV
34905200	BGP203 LED45-4S/740 II DM50 D9 48/60A	Philips standard surge protection level kV
34906900	BGP203 LED59-4S/740 I DM50 D9 48/60A	Philips standard surge protection level kV
34907600	BGP203 LED59-4S/740 II DM50 D9 48/60A	Philips standard surge protection level kV
34908300	BGP203 LED79-4S/740 I DM50 D9 48/60A	Philips standard surge protection level kV
34909000	BGP203 LED79-4S/740 II DM50 D9 48/60A	Philips standard surge protection level kV
37224100	BGP204 LED100-4S/740 II DM50 D9 48/60A	Philips standard surge protection level kV
37228900	BGP204 LED139-4S/740 II DM50 D9 48/60A	Philips standard surge protection level kV
37232600	BGP204 LED60-4S/740 II DM50 D9	Philips standard surge protection level

		Protoziono do corretancione /corres-
Order Ceda	Full Product Name	Protezione da sovratensione (comune/
37225800	BGP204 LED120-4S/740 I DM50 D9	differenziale)
3/225000		Philips standard surge protection level kV
0700000	48/60A	
37229600	BGP204 LED149-4S/740 I DM50 D9	Philips standard surge protection level
	48/60A	kV
37233300	BGP204 LED70-4S/740 I DM50 D9	Philips standard surge protection level
	48/60A	kV
37223400	BGP204 LED100-4S/740 I DM50 D9	Philips standard surge protection level
	48/60A	kV
37227200	BGP204 LED139-4S/740 I DM50 D9	Philips standard surge protection level
	48/60A	kV
37231900	BGP204 LED60-4S/740 I DM50 D9	Philips standard surge protection level
	48/60A	kV
37226500	BGP204 LED120-4S/740 II DM50 D9	Philips standard surge protection level
	48/60A	kV
37230200	BGP204 LED149-4S/740 II DM50 D9	Philips standard surge protection level
	48/60A	kV
31900000	BGP204 LED120/740 I DW D9 48/60A	Philips standard surge protection level
		kV
31918500	BGP204 LED120/740 II DW D9 48/60A	Philips standard surge protection level
		kV
31880500	BGP204 LED80/740 II DM D9 48/60A	Philips standard surge protection level
		kV
31927700	BGP204 LED120/740 II DW DDF2	Philips standard surge protection level
	48/60A	kV
31925300	BGP204 LED80/740 II DW DDF2	Philips standard surge protection level
	48/60A	kV
37236400	BGP204 LED80-4S/740 II DM50 D9	Philips standard surge protection level
	48/60A	kV
37235700	BGP204 LED80-4S/740 I DM50 D9	Philips standard surge protection level
	48/60A	kV
37237100	BGP204 LED90-4S/740 I DM50 D9	Philips standard surge protection level
	48/60A	kV

		Protezione da sovratensione (comune/
Order Code	Full Product Name	differenziale)
37234000	BGP204 LED70-4S/740 II DM50 D9	Philips standard surge protection level
	48/60A	kV
37238800	BGP204 LED90-4S/740 II DM50 D9	Philips standard surge protection level
	48/60A	kV
37289000	BGP204 LED140/740 I DM D9 48/60A	Philips standard surge protection level
		kV
37297500	BGP204 LED160/740 II DM D9 48/60A	Philips standard surge protection level
		kV
37301900	BGP204 LED170/740 I DM D9 48/60A	Philips standard surge protection level
		kV
37305700	BGP204 LED170/740 I DM DDF2	Surge protection level until 10 kV
	SRG10 48/60A	
37282100	BGP204 LED125/740 I DM DDF2	Philips standard surge protection level
	48/60A	kV
37290600	BGP204 LED140/740 II DM DDF2	Philips standard surge protection level
	48/60A	kV
37298200	BGP204 LED160/740 I DM D9 SRG10	Surge protection level until 10 kV
	48/60A	
37302600	BGP204 LED170/740 II DM DDF2	Philips standard surge protection level
	48/60A	kV

		Protezione da sovratensione (comune/
Order Code	Full Product Name	differenziale)
37284500	BGP204 LED125/740 II DM DDF2	Philips standard surge protection level
	48/60A	kV
37288300	BGP204 LED140/740 I DM DDF2	Philips standard surge protection level
	48/60A	kV
37296800	BGP204 LED160/740 II DM DDF2	Philips standard surge protection level
	48/60A	kV
37300200	BGP204 LED170/740 I DM DDF2	Philips standard surge protection level
	48/60A	kV
37304000	BGP204 LED170/740 I DM D9 SRG10	Surge protection level until 10 kV
	48/60A	
37283800	BGP204 LED125/740 I DM D9 48/60A	Philips standard surge protection level
		kV
37295100	BGP204 LED160/740 I DM D9 48/60A	Philips standard surge protection level
		kV
37299900	BGP204 LED160/740 I DM DDF2	Surge protection level until 10 kV
	SRG10 48/60A	
37303300	BGP204 LED170/740 II DM D9 48/60A	Philips standard surge protection level
		kV

Funzionamento e parte elettrica

Order Code	Full Product Name	Corrente driver
31878200	BGP203 LED50/740 II DM D9 48/60A	500 mA
34898700	BGP203 LED16-4S/740 I DM50 D9 48/60A	350 mA
34899400	BGP203 LED16-4S/740 II DM50 D9 48/60A	350 mA
34900700	BGP203 LED20-4S/740 I DM50 D9 48/60A	445 mA
34901400	BGP203 LED20-4S/740 II DM50 D9 48/60A	445 mA
34902100	BGP203 LED30-4S/740 I DM50 D9 48/60A	440 mA
34903800	BGP203 LED30-4S/740 II DM50 D9 48/60A	440 mA
34904500	BGP203 LED45-4S/740 I DM50 D9 48/60A	320 mA
34905200	BGP203 LED45-4S/740 II DM50 D9 48/60A	320 mA
34906900	BGP203 LED59-4S/740 I DM50 D9 48/60A	440 mA
34907600	BGP203 LED59-4S/740 II DM50 D9 48/60A	440 mA
34908300	BGP203 LED79-4S/740 I DM50 D9 48/60A	610 mA
34909000	BGP203 LED79-4S/740 II DM50 D9 48/60A	610 mA
37224100	BGP204 LED100-4S/740 II DM50 D9 48/60A	-
37228900	BGP204 LED139-4S/740 II DM50 D9 48/60A	-
37232600	BGP204 LED60-4S/740 II DM50 D9 48/60A	-
37225800	BGP204 LED120-4S/740 I DM50 D9 48/60A	-
37229600	BGP204 LED149-4S/740 I DM50 D9 48/60A	-
37233300	BGP204 LED70-4S/740 I DM50 D9 48/60A	-
37223400	BGP204 LED100-4S/740 I DM50 D9 48/60A	-
37227200	BGP204 LED139-4S/740 I DM50 D9 48/60A	-
37231900	BGP204 LED60-4S/740 I DM50 D9 48/60A	-
37226500	BGP204 LED120-4S/740 II DM50 D9 48/60A	-
37230200	BGP204 LED149-4S/740 II DM50 D9 48/60A	-
31900000	BGP204 LED120/740 I DW D9 48/60A	-
31918500	BGP204 LED120/740 II DW D9 48/60A	-

Order Code	Full Product Name	Corrente driver
31880500	BGP204 LED80/740 II DM D9 48/60A	-
31927700	BGP204 LED120/740 II DW DDF2 48/60A	-
31925300	BGP204 LED80/740 II DW DDF2 48/60A	-
37236400	BGP204 LED80-4S/740 II DM50 D9 48/60A	-
37235700	BGP204 LED80-4S/740 I DM50 D9 48/60A	-
37237100	BGP204 LED90-4S/740 I DM50 D9 48/60A	-
37234000	BGP204 LED70-4S/740 II DM50 D9 48/60A	-
37238800	BGP204 LED90-4S/740 II DM50 D9 48/60A	-
37289000	BGP204 LED140/740 I DM D9 48/60A	-
37297500	BGP204 LED160/740 II DM D9 48/60A	-
37301900	BGP204 LED170/740 I DM D9 48/60A	-
37305700	BGP204 LED170/740 I DM DDF2 SRG10 48/60A	-
37282100	BGP204 LED125/740 I DM DDF2 48/60A	-
37290600	BGP204 LED140/740 II DM DDF2 48/60A	-
37298200	BGP204 LED160/740 I DM D9 SRG10 48/60A	-
37302600	BGP204 LED170/740 II DM DDF2 48/60A	-
37284500	BGP204 LED125/740 II DM DDF2 48/60A	-
37288300	BGP204 LED140/740 I DM DDF2 48/60A	-
37296800	BGP204 LED160/740 II DM DDF2 48/60A	-
37300200	BGP204 LED170/740 I DM DDF2 48/60A	-
37304000	BGP204 LED170/740 I DM D9 SRG10 48/60A	-
37283800	BGP204 LED125/740 I DM D9 48/60A	-
37295100	BGP204 LED160/740 I DM D9 48/60A	-
37299900	BGP204 LED160/740 I DM DDF2 SRG10 48/60A	-
37303300	BGP204 LED170/740 II DM D9 48/60A	-

Informazioni generali (1/2)

Order		Tipo cavo di		Test filo	Codice famiglia
Code	Full Product Name	alimentazione	Rivestimento	incandescente	lampada
31878200	BGP203 LED50/740		-	Temperatura 650	
01070200	II DM D9 48/60A	110		°C, durata 5 s	LLDOO
34898700	BGP203	No		Temperatura 650	LED16
01000100	LED16-4S/740 I	110		°C, durata 5 s	LLDIO
	DM50 D9 48/60A			o, darata o o	
34899400	BGP203	No	-	Temperatura 650	LED16
	LED16-4S/740 II			°C, durata 5 s	
	DM50 D9 48/60A			,	
34900700	BGP203	No	-	Temperatura 650	LED20
	LED20-4S/740 I			°C, durata 5 s	
	DM50 D9 48/60A				
34901400	BGP203	No	-	Temperatura 650	LED20
	LED20-4S/740 II			°C, durata 5 s	
	DM50 D9 48/60A				
34902100	BGP203	No	-	Temperatura 650	LED30
	LED30-4S/740 I			°C, durata 5 s	
	DM50 D9 48/60A				
34903800	BGP203	No	-	Temperatura 650	LED30
	LED30-4S/740 II			°C, durata 5 s	
	DM50 D9 48/60A				
34904500	BGP203	No	-	Temperatura 650	LED45
	LED45-4S/740 I			°C, durata 5 s	
	DM50 D9 48/60A				
34905200	BGP203	No	-	Temperatura 650	LED45
	LED45-4S/740 II			°C, durata 5 s	
	DM50 D9 48/60A				
34906900	BGP203	No	-	Temperatura 650	LED59
	LED59-4S/740 I			°C, durata 5 s	
	DM50 D9 48/60A				
34907600	BGP203	No	-	Temperatura 650	LED59
	LED59-4S/740 II			°C, durata 5 s	
	DM50 D9 48/60A				
34908300	BGP203	No	-	Temperatura 650	LED79
	LED79-4S/740 I			°C, durata 5 s	
	DM50 D9 48/60A				
34909000	BGP203	No	-	Temperatura 650	LED79
	LED79-4S/740 II			°C, durata 5 s	
	DM50 D9 48/60A				
37224100	BGP204	-	-	-	LED100
	LED100-4S/740 II				
	DM50 D9 48/60A				
37228900	BGP204	-	-	-	LED139
	LED139-4S/740 II				
	DM50 D9 48/60A				
37232600	BGP204	-	-	-	LED60
	LED60-4S/740 II				
	DM50 D9 48/60A				

					Codice
Order		Tipo cavo di		Test filo	famiglia
Code	Full Product Name	alimentazione	Rivestimento	incandescente	lampada
37225800	BGP204	-	-	-	LED120
	LED120-4S/740 I				
	DM50 D9 48/60A				
37229600	BGP204	-	-	-	LED149
	LED149-4S/740 I				
	DM50 D9 48/60A				
37233300	BGP204	_	-	-	LED70
	LED70-4S/740 I				
	DM50 D9 48/60A				
37223400	BGP204	_	_	-	LED100
0.220.00	LED100-4S/740 I				223.00
	DM50 D9 48/60A				
37227200	BGP204	_		_	LED139
31221200	LED139-4S/740 I		_		LLD 100
	DM50 D9 48/60A				
37231900	BGP204	_			LED60
37231900		-	-	-	LEDOU
	LED60-4S/740 I				
	DM50 D9 48/60A				. ==
37226500	BGP204	-	-	-	LED120
	LED120-4S/740 II				
	DM50 D9 48/60A				
37230200	BGP204	-	-	-	LED149
	LED149-4S/740 II				
	DM50 D9 48/60A				
31900000	BGP204	-	-	-	LED120
	LED120/740 I DW				
	D9 48/60A				
31918500	BGP204	-	-	-	LED120
	LED120/740 II DW				
	D9 48/60A				
31880500	BGP204 LED80/740	-	-	-	LED80
	II DM D9 48/60A				
31927700	BGP204	-	-	-	LED120
	LED120/740 II DW				
	DDF2 48/60A				
31925300	BGP204 LED80/740	-	-	-	LED80
	II DW DDF2 48/60A				
37236400	BGP204	-	-	-	LED80
	LED80-4S/740 II				
	DM50 D9 48/60A				
37235700		-	-	-	LED80
	LED80-4S/740 I				
	DM50 D9 48/60A				
37237100		_	-	_	LED90
0.207100	LED90-4S/740 I				
	DM50 D9 48/60A				
37234000		_	_	_	LED70
J1 234000		-	-	-	LLD/U
	LED70-4S/740 II				
	DM50 D9 48/60A				

					Codice						Codice
Order		Tipo cavo di		Test filo	famiglia	Order		Tipo cavo di		Test filo	famiglia
Code	Full Product Name	alimentazione	Rivestimento	incandescente	lampada	Code	Full Product Name	alimentazione	Rivestimento	incandescente	lampada
37238800	BGP204	-	-	-	LED90	37284500	BGP204	-	-	-	LED125
	LED90-4S/740 II						LED125/740 II DM				
	DM50 D9 48/60A						DDF2 48/60A				
37289000	BGP204	-	-	-	LED140	37288300	BGP204	-	-	-	LED140
	LED140/740 I DM						LED140/740 I DM				
	D9 48/60A						DDF2 48/60A				
37297500	BGP204	-	-	-	LED160	37296800	BGP204	-	-	-	LED160
	LED160/740 II DM						LED160/740 II DM				
	D9 48/60A						DDF2 48/60A				
37301900	BGP204	-	-	-	LED170	37300200	BGP204	-	-	-	LED170
	LED170/740 I DM						LED170/740 I DM				
	D9 48/60A						DDF2 48/60A				
37305700	BGP204	-	-	-	LED170	37304000	BGP204	-	-	-	LED170
	LED170/740 I DM						LED170/740 I DM				
	DDF2 SRG10						D9 SRG10 48/60A				
	48/60A					37283800	BGP204	-	-	-	LED125
37282100	BGP204	-	-	-	LED125		LED125/740 I DM				
	LED125/740 I DM						D9 48/60A				
	DDF2 48/60A					37295100	BGP204	-	-	-	LED160
37290600	BGP204	-	-	-	LED140		LED160/740 I DM				
	LED140/740 II DM						D9 48/60A				
	DDF2 48/60A					37299900	BGP204	-	-	-	LED160
37298200	BGP204	-	-	-	LED160		LED160/740 I DM				
	LED160/740 I DM						DDF2 SRG10				
	D9 SRG10 48/60A						48/60A				
37302600	BGP204	-	-	-	LED170	37303300	BGP204	-	-	-	LED170
	LED170/740 II DM						LED170/740 II DM				
	DDF2 48/60A						D9 48/60A				

Informazioni generali (2/2)

Order Code Full Product Name luminose Tipo di ottica prodotto 31878200 BGP203 LED50/740 II DM D9 3 Distribution BGP203 34898700 BGP203 LED16-4S/740 I DM50 1 Distribution BGP203 34899400 BGP203 LED16-4S/740 II DM50 1 Distribution BGP203 34900700 BGP203 LED20-4S/740 I DM50 1 Distribution BGP203 34901400 BGP203 LED20-4S/740 II DM50 1 Distribution BGP203 34902100 BGP203 LED30-4S/740 I DM50 2 Distribution BGP203 34903800 BGP203 LED30-4S/740 I DM50 2 Distribution BGP203 34903800 BGP203 LED30-4S/740 II DM50 2 Distribution BGP203 34903800 BGP203 LED30-4S/740 II DM50 2 Distribution BGP203 34903800 BGP203 LED30-4S/740 II DM50 2 Distribution BGP203			Numero di sorgenti		Codice famiglia
48/60A medium 34898700 BGP203 LED16-4S/740 I DM50 1 Distribution BGP203 34899400 BGP203 LED16-4S/740 II DM50 1 Distribution BGP203 34900700 BGP203 LED20-4S/740 I DM50 1 Distribution BGP203 34901400 BGP203 LED20-4S/740 II DM50 1 Distribution BGP203 34902100 BGP203 LED30-4S/740 I DM50 2 Distribution BGP203 34903800 BGP203 LED30-4S/740 II DM50 2 Distribution BGP203 34903800 BGP203 LED30-4S/740 II DM50 2 Distribution BGP203	Order Code	Full Product Name	luminose	Tipo di ottica	prodotto
34898700 BGP203 LED16-4S/740 I DM50 1 Distribution BGP203 D9 48/60A medium 34899400 BGP203 LED16-4S/740 II DM50 1 Distribution BGP203 D9 48/60A medium 34900700 BGP203 LED20-4S/740 I DM50 1 Distribution BGP203 D9 48/60A medium 34901400 BGP203 LED20-4S/740 II DM50 1 Distribution BGP203 D9 48/60A medium 34902100 BGP203 LED30-4S/740 I DM50 2 Distribution BGP203 D9 48/60A medium 34903800 BGP203 LED30-4S/740 II DM50 2 Distribution BGP203 D9 48/60A medium	31878200	BGP203 LED50/740 II DM D9	3	Distribution	BGP203
D9 48/60A medium 34899400 BGP203 LED16-4S/740 II DM50 1 Distribution medium 34900700 BGP203 LED20-4S/740 I DM50 1 Distribution BGP203 D9 48/60A medium 34901400 BGP203 LED20-4S/740 II DM50 1 Distribution BGP203 D9 48/60A medium 34902100 BGP203 LED30-4S/740 I DM50 2 Distribution BGP203 D9 48/60A medium 34903800 BGP203 LED30-4S/740 II DM50 2 Distribution BGP203 D9 48/60A medium 34903800 BGP203 LED30-4S/740 II DM50 2 Distribution BGP203 D9 48/60A medium		48/60A		medium	
34899400 BGP203 LED16-4S/740 II DM50 1 Distribution BGP203 D9 48/60A medium 34900700 BGP203 LED20-4S/740 I DM50 1 Distribution BGP203 D9 48/60A medium 34901400 BGP203 LED20-4S/740 II DM50 1 Distribution BGP203 D9 48/60A medium 34902100 BGP203 LED30-4S/740 I DM50 2 Distribution BGP203 D9 48/60A medium 34903800 BGP203 LED30-4S/740 II DM50 2 Distribution BGP203 D9 48/60A medium	34898700	BGP203 LED16-4S/740 I DM50	1	Distribution	BGP203
D9 48/60A medium 34900700 BGP203 LED20-4S/740 I DM50 1 Distribution BGP203 D9 48/60A medium 34901400 BGP203 LED20-4S/740 II DM50 1 Distribution BGP203 D9 48/60A medium 34902100 BGP203 LED30-4S/740 I DM50 2 Distribution BGP203 D9 48/60A medium 34903800 BGP203 LED30-4S/740 II DM50 2 Distribution BGP203 D9 48/60A medium		D9 48/60A		medium	
34900700 BGP203 LED20-4S/740 I DM50 1 Distribution BGP203 D9 48/60A medium 34901400 BGP203 LED20-4S/740 II DM50 1 Distribution BGP203 D9 48/60A medium 34902100 BGP203 LED30-4S/740 I DM50 2 Distribution BGP203 D9 48/60A medium 34903800 BGP203 LED30-4S/740 II DM50 2 Distribution BGP203 D9 48/60A medium	34899400	BGP203 LED16-4S/740 II DM50	1	Distribution	BGP203
D9 48/60A medium 34901400 BGP203 LED20-4S/740 II DM50 1 Distribution BGP203 D9 48/60A medium 34902100 BGP203 LED30-4S/740 I DM50 2 Distribution BGP203 D9 48/60A medium 34903800 BGP203 LED30-4S/740 II DM50 2 Distribution BGP203 D9 48/60A medium		D9 48/60A		medium	
34901400 BGP203 LED20-4S/740 II DM50 1 Distribution BGP203 D9 48/60A medium 34902100 BGP203 LED30-4S/740 I DM50 2 Distribution BGP203 D9 48/60A medium 34903800 BGP203 LED30-4S/740 II DM50 2 Distribution BGP203 D9 48/60A medium	34900700	BGP203 LED20-4S/740 I DM50	1	Distribution	BGP203
D9 48/60A medium 34902100 BGP203 LED30-4S/740 I DM50 2 Distribution BGP203 D9 48/60A medium 34903800 BGP203 LED30-4S/740 II DM50 2 Distribution BGP203 D9 48/60A medium		D9 48/60A		medium	
34902100 BGP203 LED30-4S/740 I DM50 2 Distribution BGP203 D9 48/60A medium 34903800 BGP203 LED30-4S/740 II DM50 2 Distribution BGP203 D9 48/60A medium	34901400	BGP203 LED20-4S/740 II DM50	1	Distribution	BGP203
D9 48/60A medium 34903800 BGP203 LED30-4S/740 II DM50 2 Distribution BGP203 D9 48/60A medium		D9 48/60A		medium	
34903800 BGP203 LED30-4S/740 II DM50 2 Distribution BGP203 D9 48/60A medium	34902100	BGP203 LED30-4S/740 I DM50	2	Distribution	BGP203
D9 48/60A medium		D9 48/60A		medium	
	34903800	BGP203 LED30-4S/740 II DM50	2	Distribution	BGP203
		D9 48/60A		medium	
34904500 BGP203 LED45-4S/740 I DM50 2 Distribution BGP203	34904500	BGP203 LED45-4S/740 I DM50	2	Distribution	BGP203
D9 48/60A medium		D9 48/60A		medium	

		Numero di		Codice
		sorgenti		famiglia
Order Code	Full Product Name	luminose	Tipo di ottica	prodotto
34905200	BGP203 LED45-4S/740 II DM50	2	Distribution	BGP203
	D9 48/60A		medium	
34906900	BGP203 LED59-4S/740 I DM50	2	Distribution	BGP203
	D9 48/60A		medium	
34907600	BGP203 LED59-4S/740 II DM50	2	Distribution	BGP203
	D9 48/60A		medium	
34908300	BGP203 LED79-4S/740 I DM50	2	Distribution	BGP203
	D9 48/60A		medium	
34909000	BGP203 LED79-4S/740 II DM50	2	Distribution	BGP203
	D9 48/60A		medium	
37224100	BGP204 LED100-4S/740 II DM50	-	Distribution	BGP204
	D9 48/60A		medium	
37228900	BGP204 LED139-4S/740 II DM50	-	Distribution	BGP204
	D9 48/60A		medium	
37232600	BGP204 LED60-4S/740 II DM50	-	Distribution	BGP204
	D9 48/60A		medium	

		Numero di		Codice
		sorgenti		famiglia
Order Code	Full Product Name	luminose	Tipo di ottica	prodotto
37225800	BGP204 LED120-4S/740 I DM50	-	Distribution	BGP204
	D9 48/60A		medium	
37229600	BGP204 LED149-4S/740 I DM50	-	Distribution	BGP204
	D9 48/60A		medium	
37233300	BGP204 LED70-4S/740 I DM50	-	Distribution	BGP204
	D9 48/60A		medium	
37223400	BGP204 LED100-4S/740 I DM50	-	Distribution	BGP204
	D9 48/60A		medium	
37227200	BGP204 LED139-4S/740 I DM50	-	Distribution	BGP204
	D9 48/60A		medium	
37231900	BGP204 LED60-4S/740 I DM50	-	Distribution	BGP204
	D9 48/60A		medium	
37226500	BGP204 LED120-4S/740 II DM50	-	Distribution	BGP204
	D9 48/60A		medium	
37230200	BGP204 LED149-4S/740 II DM50	-	Distribution	BGP204
	D9 48/60A		medium	
31900000	BGP204 LED120/740 I DW D9	-	Distribution wide	BGP204
	48/60A			
31918500	BGP204 LED120/740 II DW D9	-	Distribution wide	BGP204
	48/60A			
31880500	BGP204 LED80/740 II DM D9	-	Distribution	BGP204
	48/60A		medium	
31927700	BGP204 LED120/740 II DW DDF2	-	Distribution wide	BGP204
	48/60A			
31925300	BGP204 LED80/740 II DW DDF2	-	Distribution wide	BGP204
	48/60A			
37236400	BGP204 LED80-4S/740 II DM50	-	Distribution	BGP204
	D9 48/60A		medium	
37235700	BGP204 LED80-4S/740 I DM50	-	Distribution	BGP204
	D9 48/60A		medium	
37237100	BGP204 LED90-4S/740 I DM50	-	Distribution	BGP204
	D9 48/60A		medium	
37234000	BGP204 LED70-4S/740 II DM50	-	Distribution	BGP204
	D9 48/60A		medium	
37238800	BGP204 LED90-4S/740 II DM50	-	Distribution	BGP204
	D9 48/60A		medium	

		Numero di		Codice
		sorgenti		famiglia
Order Code	Full Product Name	luminose	Tipo di ottica	prodotto
37289000	BGP204 LED140/740 I DM D9	-	Distribution	BGP204
	48/60A		medium	
37297500	BGP204 LED160/740 II DM D9	-	Distribution	BGP204
	48/60A		medium	
37301900	BGP204 LED170/740 I DM D9	-	Distribution	BGP204
	48/60A		medium	
37305700	BGP204 LED170/740 I DM DDF2	-	Distribution	BGP204
	SRG10 48/60A		medium	
37282100	BGP204 LED125/740 I DM DDF2	-	Distribution	BGP204
	48/60A		medium	
37290600	BGP204 LED140/740 II DM DDF2	-	Distribution	BGP204
	48/60A		medium	
37298200	BGP204 LED160/740 I DM D9	-	Distribution	BGP204
	SRG10 48/60A		medium	
37302600	BGP204 LED170/740 II DM DDF2	-	Distribution	BGP204
	48/60A		medium	
37284500	BGP204 LED125/740 II DM DDF2	-	Distribution	BGP204
	48/60A		medium	
37288300	BGP204 LED140/740 I DM DDF2	-	Distribution	BGP204
	48/60A		medium	
37296800	BGP204 LED160/740 II DM DDF2	-	Distribution	BGP204
	48/60A		medium	
37300200	BGP204 LED170/740 I DM DDF2	-	Distribution	BGP204
	48/60A		medium	
37304000	BGP204 LED170/740 I DM D9	-	Distribution	BGP204
	SRG10 48/60A		medium	
37283800	BGP204 LED125/740 I DM D9	-	Distribution	BGP204
	48/60A		medium	
37295100	BGP204 LED160/740 I DM D9	-	Distribution	BGP204
	48/60A		medium	
37299900	BGP204 LED160/740 I DM DDF2	-	Distribution	BGP204
	SRG10 48/60A		medium	
37303300	BGP204 LED170/740 II DM D9	-	Distribution	BGP204
	48/60A		medium	

Rendimento iniziale (conformità IEC)

Order Code	Full Product Name	Flusso luminoso iniziale
31878200	BGP203 LED50/740 II DM D9 48/60A	4250 lm
34898700	BGP203 LED16-4S/740 I DM50 D9 48/60A	1376 lm
34899400	BGP203 LED16-4S/740 II DM50 D9 48/60A	1376 lm
34900700	BGP203 LED20-4S/740 I DM50 D9 48/60A	1720 lm
34901400	BGP203 LED20-4S/740 II DM50 D9 48/60A	1720 lm
34902100	BGP203 LED30-4S/740 I DM50 D9 48/60A	2580 lm
34903800	BGP203 LED30-4S/740 II DM50 D9 48/60A	2580 lm
34904500	BGP203 LED45-4S/740 I DM50 D9 48/60A	3825 lm
34905200	BGP203 LED45-4S/740 II DM50 D9 48/60A	3825 lm
34906900	BGP203 LED59-4S/740 I DM50 D9 48/60A	5100 lm

Order Code	Full Product Name	Flusso luminoso iniziale
34907600	BGP203 LED59-4S/740 II DM50 D9 48/60A	5100 lm
34908300	BGP203 LED79-4S/740 I DM50 D9 48/60A	6800 lm
34909000	BGP203 LED79-4S/740 II DM50 D9 48/60A	6800 lm
37224100	BGP204 LED100-4S/740 II DM50 D9 48/60A	8700 lm
37228900	BGP204 LED139-4S/740 II DM50 D9 48/60A	12040 lm
37232600	BGP204 LED60-4S/740 II DM50 D9 48/60A	5280 lm
37225800	BGP204 LED120-4S/740 I DM50 D9 48/60A	10440 lm
37229600	BGP204 LED149-4S/740 I DM50 D9 48/60A	12900 lm
37233300	BGP204 LED70-4S/740 I DM50 D9 48/60A	6090 lm
37223400	BGP204 LED100-4S/740 I DM50 D9 48/60A	8700 lm

Order Code	Full Product Name	Flusso luminoso iniziale
37227200	BGP204 LED139-4S/740 I DM50 D9 48/60A	12040 lm
37231900	BGP204 LED60-4S/740 I DM50 D9 48/60A	5280 lm
37226500	BGP204 LED120-4S/740 II DM50 D9 48/60A	10440 lm
37230200	BGP204 LED149-4S/740 II DM50 D9 48/60A	12900 lm
31900000	BGP204 LED120/740 I DW D9 48/60A	10790 lm
31918500	BGP204 LED120/740 II DW D9 48/60A	10790 lm
31880500	BGP204 LED80/740 II DM D9 48/60A	7221 lm
31927700	BGP204 LED120/740 II DW DDF2 48/60A	10790 lm
31925300	BGP204 LED80/740 II DW DDF2 48/60A	7134 lm
37236400	BGP204 LED80-4S/740 II DM50 D9 48/60A	6960 lm
37235700	BGP204 LED80-4S/740 I DM50 D9 48/60A	6960 lm
37237100	BGP204 LED90-4S/740 I DM50 D9 48/60A	7830 lm
37234000	BGP204 LED70-4S/740 II DM50 D9 48/60A	6090 lm
37238800	BGP204 LED90-4S/740 II DM50 D9 48/60A	7830 lm
37289000	BGP204 LED140/740 I DM D9 48/60A	12040 lm
37297500	BGP204 LED160/740 II DM D9 48/60A	13760 lm

Order Code	Full Product Name	Flusso luminoso iniziale
37301900	BGP204 LED170/740 I DM D9 48/60A	14620 lm
37305700	BGP204 LED170/740 I DM DDF2 SRG10 48/60A	14620 lm
37282100	BGP204 LED125/740 I DM DDF2 48/60A	10750 lm
37290600	BGP204 LED140/740 II DM DDF2 48/60A	12040 lm
37298200	BGP204 LED160/740 I DM D9 SRG10 48/60A	13760 lm
37302600	BGP204 LED170/740 II DM DDF2 48/60A	14620 lm
37284500	BGP204 LED125/740 II DM DDF2 48/60A	10750 lm
37288300	BGP204 LED140/740 I DM DDF2 48/60A	12040 lm
37296800	BGP204 LED160/740 II DM DDF2 48/60A	13760 lm
37300200	BGP204 LED170/740 I DM DDF2 48/60A	14620 lm
37304000	BGP204 LED170/740 I DM D9 SRG10 48/60A	14620 lm
37283800	BGP204 LED125/740 I DM D9 48/60A	10750 lm
37295100	BGP204 LED160/740 I DM D9 48/60A	13760 lm
37299900	BGP204 LED160/740 I DM DDF2 SRG10 48/60A	13760 lm
37303300	BGP204 LED170/740 II DM D9 48/60A	14620 lm

Dati tecnici di illuminazione

		Rapporto lumen scotopico/
Order Code	Full Product Name	fotopico
31878200	BGP203 LED50/740 II DM D9 48/60A	1,6
34898700	BGP203 LED16-4S/740 I DM50 D9 48/60A	1,6
34899400	BGP203 LED16-4S/740 II DM50 D9 48/60A	1,6
34900700	BGP203 LED20-4S/740 I DM50 D9 48/60A	1,6
34901400	BGP203 LED20-4S/740 II DM50 D9 48/60A	1,6
34902100	BGP203 LED30-4S/740 I DM50 D9 48/60A	1,6
34903800	BGP203 LED30-4S/740 II DM50 D9 48/60A	1,6
34904500	BGP203 LED45-4S/740 I DM50 D9 48/60A	1,6
34905200	BGP203 LED45-4S/740 II DM50 D9 48/60A	1,6
34906900	BGP203 LED59-4S/740 I DM50 D9 48/60A	1,6
34907600	BGP203 LED59-4S/740 II DM50 D9 48/60A	1,6
34908300	BGP203 LED79-4S/740 I DM50 D9 48/60A	1,6
34909000	BGP203 LED79-4S/740 II DM50 D9 48/60A	1,6
37224100	BGP204 LED100-4S/740 II DM50 D9 48/60A	-
37228900	BGP204 LED139-4S/740 II DM50 D9 48/60A	-
37232600	BGP204 LED60-4S/740 II DM50 D9 48/60A	-
37225800	BGP204 LED120-4S/740 I DM50 D9 48/60A	-
37229600	BGP204 LED149-4S/740 I DM50 D9 48/60A	-
37233300	BGP204 LED70-4S/740 I DM50 D9 48/60A	-
37223400	BGP204 LED100-4S/740 I DM50 D9 48/60A	-
37227200	BGP204 LED139-4S/740 I DM50 D9 48/60A	-
37231900	BGP204 LED60-4S/740 I DM50 D9 48/60A	-
37226500	BGP204 LED120-4S/740 II DM50 D9 48/60A	-
37230200	BGP204 LED149-4S/740 II DM50 D9 48/60A	-
31900000	BGP204 LED120/740 I DW D9 48/60A	-
31918500	BGP204 LED120/740 II DW D9 48/60A	-

		Rapporto lumen scotopico/
Order Code	Full Product Name	fotopico
31880500	BGP204 LED80/740 II DM D9 48/60A	-
31927700	BGP204 LED120/740 II DW DDF2 48/60A	-
31925300	BGP204 LED80/740 II DW DDF2 48/60A	-
37236400	BGP204 LED80-4S/740 II DM50 D9 48/60A	-
37235700	BGP204 LED80-4S/740 I DM50 D9 48/60A	-
37237100	BGP204 LED90-4S/740 I DM50 D9 48/60A	-
37234000	BGP204 LED70-4S/740 II DM50 D9 48/60A	-
37238800	BGP204 LED90-4S/740 II DM50 D9 48/60A	-
37289000	BGP204 LED140/740 I DM D9 48/60A	-
37297500	BGP204 LED160/740 II DM D9 48/60A	-
37301900	BGP204 LED170/740 I DM D9 48/60A	-
37305700	BGP204 LED170/740 I DM DDF2 SRG10 48/60A	-
37282100	BGP204 LED125/740 I DM DDF2 48/60A	-
37290600	BGP204 LED140/740 II DM DDF2 48/60A	-
37298200	BGP204 LED160/740 I DM D9 SRG10 48/60A	-
37302600	BGP204 LED170/740 II DM DDF2 48/60A	-
37284500	BGP204 LED125/740 II DM DDF2 48/60A	-
37288300	BGP204 LED140/740 I DM DDF2 48/60A	-
37296800	BGP204 LED160/740 II DM DDF2 48/60A	-
37300200	BGP204 LED170/740 I DM DDF2 48/60A	-
37304000	BGP204 LED170/740 I DM D9 SRG10 48/60A	-
37283800	BGP204 LED125/740 I DM D9 48/60A	-
37295100	BGP204 LED160/740 I DM D9 48/60A	-
37299900	BGP204 LED160/740 I DM DDF2 SRG10 48/60A	-
37303300	BGP204 LED170/740 II DM D9 48/60A	-

© 2018 Signify Holding Tutti i diritti riservati. Signify non fornisce alcuna rappresentazione o garanzia relativamente all'accuratezza o alla completezza delle informazioni incluse e non può essere ritenuta responsabile di eventuali azioni basate su di esse. Le informazioni riportate nel presente documento non hanno alcuno scopo commerciale e non fanno parte di alcun preventivo o contratto, salvo diversamente concordato con Signify. Tutti gli altri marchi sono di proprietà di Signify Holding o dei rispettivi proprietari.